UNIVERSITA DEGLI STUDI DI TRENTO
CIMeC - Center for Mind/Brain Sciences

Master’s Degree in Cognitive Science

2018-2019

Referentiality in distributional
representations of named events

Supervisor: Dr. Aurélie Herbelot Student: Gosse Minnema

Co-supervisor: Dr. Yannick Parmentier



Referentiality in distributional representations of
named events

Gosse Minnema | MSc Thesis

Supervised by Aurélie Herbelot and Yannick Parmentier

Erasmus Mundus Joint Master’s Degree in
Language & Communication Technologies

University of Lorraine (2017-2018)
University of Trento (2018-2019)

S, Co-funded by the
* K Erasmus+ Programme
el of the European Union
UNIVERSITE " n JEf 77 nstitut des
@ T B (@

#4# UNIVERSITA :
% DITRENTO CiMeC




Abstract

Events are an important part of natural language meaning, but pose a challenge to distribu-
tional semantics, a popular approach in computational linguistics that models the meanings
of words and sentences based on their co-occurrence contexts in large corpora. This thesis
investigates named events (e.g., Hurricane Sandy’, ‘Battle of Waterloo’) and proposes distri-
butional representations derived from encyclopedic definitions of these events, as well as from
the textual contexts of the event names themselves. We investigate to what extent these distri-
butional representations encode referential information about the events that they represent
(e.g., when the event happened, where it happened, the event’s participants, etc.). To do this,
we train classification models that take as input distributional representations of events and
predict referential attributes of these events. In line with earlier work about predicting ref-
erential information from distributional representations, our results show that many event
attributes can be successfully predicted. Finally, we perform a qualitative analysis of the event
description representation space to find out what semantic properties of events it encodes.
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1. Introduction

1.1. Motivation

At the core of this thesis is an old and difficult question: how does the way in which we talk
about the world reflect what that world is like? Even though most people would probably
intuitively agree that when we talk, we usually convey some type of information about the
outside world, exactly how this happens (and even whether it happens at all) is something that
philosophers and language scientists have been arguing about for centuries. This thesis focuses
on a particular aspect of the outside world, namely events (‘things that happen in the world’)
and investigates how distributional and neural approaches to computational semantics can be
used to model how we talk about events.

1.1.1. Vector space representations and referentiality

An important problem in computational linguistics and related fields is how to represent the
meanings of words, sentences, and texts in a way that is useful for computer algorithms. While
it is possible to do this using symbolic representations (large-scale symbolic knowledge bases
include WordNet [Miller 1995] for word meaning, and the Parallel Meaning Bank [Abzianidze
et al. 2017] for sentence meaning), these often have the disadvantage of being very labour-
intensive to produce and sometimes lacking in nuance. As an alternative, continuous rep-
resentations have been proposed that represent meanings as vectors in a high-dimensional
space and can be automatically derived from corpus data using statistical methods. Such vec-
tors can be computed in many different ways, for example directly from word-context co-
occurrence statistics (e.g. Latent Semantic Analysis [LSA, Landauer and Dumais 1997], Dis-
tributional Memory [Baroni and Lenci 2010], Global Vectors for Word Representation [GloVe,
Pennington et al. 2014]), as a byproduct of neural network language models (e.g. NNLM, Ben-
gio et al. 2003), or using neural networks specifically design to learn word representations (e.g.
wordzvec, Mikolov et al. 2013). However, all of these vector-space approaches have in common
that they implicitly or explicitly rely on co-occurrence patterns, placing vectors of words (or
larger linguistic expressions) that occur in similar contexts close to each other in the vector
space.

In the theoretical literature, this principle is known as the ‘distributional hypothesis’, which
was first formulated in Harris (1954) and holds that linguistic expressions with similar mean-
ings occur in similar contexts (Turney and Pantel 2010). This hypothesis can be interpreted in
many different ways; ‘strong’ versions claim that context and meaning are identical and that
mental meaning representations are also contextual in nature, while ‘weak’ versions only say
that contextual information is useful for inferring semantic information (Lenci 2008). There is
a lot of evidence for at least the weak version: vector-space representations are very successful



at capturing conceptual information, such as the fact that cat is more similar to dog than to pi-
ano or that the difference between king and man is similar to the difference between queen and
woman (Mikolov et al. 2013). Hence, while distributional representations are solely based on
corpus data, without any explicit information about the ‘outside world’, they implicitly encode
a certain amount of world knowledge.

While vector representations are very successful at capturing the lexical meaning of individ-
ual words, it cannot be easily extended to capture the semantics of larger linguistic expressions
(such as noun phrases or sentences) in a compositional way. By contrast, the formal semantics
tradition (which started with work like Montague 1973), relying on tools from mathematical
logic, elegantly models the overall semantic structure of phrases and sentences, but is less suit-
able for computationally modeling lexical meaning as it relies on complex, manually defined
definitions. Under the umbrella term of formal distributional semantics (Boleda and Herbelot
2017), recent work has started trying to unite these two parts of computational semantics and
model lexical and compositional aspects of linguistic meaning at the same time. So far, work
in formal distributional semantics has successfully addressed several phenomena in the noun
phrase domain such as quantification (Baroni et al. 2012; Herbelot and Vecchi 2015), noun-
adjective pairs (Baroni et al. 2012), and (adjectival) negation (Hermann et al. 2013).

While a unified theory of semantics would be very attractive, a key problem is what exactly
combined logical and distributional representations would represent. In formal semantics, ex-
pressions are always evaluated against a model of the world (e.g., cat denotes the set of cats
in the world), while in distributional semantics, meanings are only defined relative to other
meanings; it is not clear how to combine these two kinds of meaning in a consistent way.

Although efforts have been made to rigorously define what distributional representations
refer to (e.g., Erk 2013; Erk 2016), these focused on the referential properties of kinds (e.g. the
different properties of alligators and crocodiles). Modeling descriptions individual entities (e.g.
my cat, the alligator I saw yesterday, or Harry) in a distributional way is much trickier because,
by nature, corpus-derived vector representations are an ‘average’ of from many different texts
about many different situations, which means that any reference to individual entities gets
lost. An interesting ‘trick’ to get around this limitation is to model expressions that, within
a given corpus, always refer to the same entity, such as proper names of famous people or of
geographical entities (Herbelot and Vecchi 2015; Gupta et al. 2015). These studies computed
vector representations for names such as ‘Mr. Darcy’ or ‘Ttaly’, and investigated the referential
properties of these vectors (see section 2.3 for extended discussion). This works because, if a
name occurs frequently enough in a corpus, the contexts in which it is used might tell us certain
things about what the referent of that name is like. For example, it is likely that the name
‘Ttaly’ is occurs much more frequently in the context of ‘European Union’ than ‘Argentina’
does, which could help us infer that Italy is a member of the EU while Argentina is not. In
thesis, we will use a similar strategy, but for events rather than for entities.

1.1.2. Events in natural language

When we use language, we sometimes describe the world in a static way (My alligator’s under-
side is cream-colored) but we often also talk about what happens or changes in the world (Your
alligator killed my chickens). An interesting observation from the formal semantics literature



is that in some respects, descriptions of events behave similarly to individuals:

(1) a. Your alligator killed my chickens
b. Your alligators killed my chickens [slowly]

c. Your alligators killed my chickens [slowly] [around 4am] [in a Parisian suburb]
(2) a. The death of my chickens [was slow]
b. The death of my chickens [was slow] and [happened around 4am]

In these examples, (1b) refers to the same event as (1a), but additionally assigns the predicate
‘slowly’ to this event. In (1c), we see that any number of such predicates can be added and will
be interpreted conjunctively (the events happened slowly and it happened around gam, ...).
When the event is expressed by a noun phrase rather than by a full sentence as in (2), these
properties (predication and conjunction) are even clearer. The idea that events are a kind of
‘things’ that can be the subject of predicates was first expressed in Davidson (1967) and led
formal semanticists to represent sentences like those in (1) with logical forms like (3):

(3) Jeleat(e) A ... Ahappened_slowly(e) A happened_at_gam(e) A ...]*!

This similarity between events and entities means that individual events in distributional
semantics is difficult for the same reason that modeling individual entities is difficult: most
information about individual events would get lost in representations derived from large cor-
pora. However, just like for entities, there are events that have a unique and well-known name,
and whose distributional properties might contain clues about their referential properties. For
example, the expression “The battle of Waterloo’ could be seen as referring to the same event
as a sentence like (4):

(4) British and Prussian forces fought Napoleon’s army on 18 June 1815 near Brussels.”

1.2. Problem statement and approach

In this thesis, we investigate how named events can be represented in corpus-based vector
space models of meaning and what referential information these representations can encode.
In particular, we are interested in the following three subproblems:

1. Which possible ways of constructing an ‘event space’ are there?
2. How well can referential information be predicted from event vectors?

3. How is referential information encoded in the vector space?

'Patient and agent arguments omitted for simplicity.
’Cf. https://en.wikipedia.org/wiki/Battle_of_Waterloo
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We aim to address these problems by first (chapter 3) constructing a dataset of named events,
along with attributes and textual descriptions, derived from Wikipedia. Then, we start ad-
dressing problem #1 by proposing two methods for constructing vectors for named events. In
chapter 4, we introduce a method that does not model event names directly, but approximates
doing this by modeling encyclopedia definitions of the events. This has the advantage of being
possible even for events with infrequent or ambiguous names, and can be done using exist-
ing (pre-trained) vector spaces, which makes the vector construction process simpler and less
computationally costly. We experiment with different ways of representing event descriptions,
both using more traditional distributional methods and with contextual text embeddings de-
rived from BERT (Devlin et al. 2018), a deep learning-based language understanding model.
However, we also explore the possibilities for directly creating distributional representations
for event names (chapter 5).

Then, we move on to testing what referential properties our event spaces encode (#2). In
chapter 6, we perform an experiment inspired by Gupta et al. (2015)’s work: we train clas-
sification models to predict referential properties of individual events, including traditional
semantic roles such as event participant information (where possible), TIME and LOCATION, as
well as event type-specific attributes (e.g., wind speed for hurricanes). Finally, in chapter 7, we
address #3 by performing an qualitative analysis of our event spaces and trying to interpret
their dimensions.

11



2. Theoretical background

2.1. Language and the world

Intuitively, there has to be some kind of relationship between language and the real world, if
only because language is used not just in our own minds but also in the real world, and because
we often use language to refer to things in the outside world. However, there exist completely
different opinions about what that relationship is like and how important it is. On one end of
the spectrum is the view defended by Noam Chomsky, which holds that “natural language has
no semantics in the sense of relations between symbols and mind-independent entities. Rather,
it has syntax (symbol manipulation) and pragmatics (modes of use of language)” (Chomsky
2013, p. 44). Under this view, meaning is something that exists only within the mind and
relates to the outside world only in a very indirect way. Another extreme are truth-theoretic
approaches to semantics, that are based around models of the outside world (or possible worlds)
against which linguistic expressions are evaluated.

Somewhere in the middle between these extremes is an approach called Natural Language
Ontology (NLO) (Moltmann 2018). NLO is not a theory of semantics but a framework for
investigating what ontology (i.e., theory of ‘what there is’ in the world) is implicit in how
speakers use natural languages. An example of this would be sentences like in (5), which are
taken as evidence that objects (whether physical or abstract) and events belong to separate
ontological categories.

(5) (adapted from Moltmann 2018, p. 2)
a. The building described in the guide exists.
b. The smallest prime number exists.
c. ?? The inauguration of the president exists.

d. The inauguration of the president happens.

NLO does not agree with Chomsky’s rejection of referential semantics, although it is not
necessarily incompatible with the view that meaning is purely mental: the proposed ontologies
are only meant to reflect how reality ‘appears’ to speakers, not what it ‘really is’. On the other
hand, NLO is also different from model-theoretic semantics, which studies how language refers
to the world but is not necessarily interested in the world itself, and tries to make only minimal
assumptions about what the world is like.

The approach developed in this thesis is part of a line of research within distributional se-
mantics (e.g. Herbelot and Vecchi 2015; Gupta et al. 2015; Kuzmenko and Herbelot 2019; see
section 2.3) that investigates how corpus-based representations reflect the real world. In some
sense, our work can be thought of as a version of NLO, as we share the goal of investigating
how language reflects what the world is like (or appears to be like). However, there are two
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crucial differences. First, we use different methods and sources of data: we use corpus-based
computational models, unlike NLO, which uses the methods of traditional formal semantics.
In other words, NLO models linguistic competence, whereas we model language use (‘per-
formance’) and its relation to world knowledge. Secondly, we investigate different kinds of
phenomena. Whereas NLO is typically concerned with what categories of entities (e.g., ob-
jects, properties, events) the ontology implicit in language should contain, we focus mostly on
properties of specific entities. For example, our experiments in chapter 6 will tell us something
about what usage data about the event name ‘Battle of Waterloo’ encodes about that event. On
the other hand, in chapter 7 we will briefly look at what distributional data can tell us about
the distinction between objects and events; this is more in line with ‘standard’ NLO and could
be seen as a large-scale version of example (5) above.

2.2. What are events?

Events are (or rather, happen) everywhere in the world around us, but it is hard to define what
exactly they are, and how what they are relates to how we talk about them. The aim of this
thesis is to predict referential information from distributional representations of named events.
In this section, we will first discuss what named events are and how event names are different
from other linguistic expressions of events. Then, we describe the view on the ontological status
of events that we will adopt (i.e., what is the referential information that we will be trying to
predict), how we connect event names to event argument structure. Finally, we combine all of
these insights into a unified view on named events and relate them to our experiments.

2.2.1. Linguistic expressions of events

For the moment, let’s define events informally as ‘things that happen’ during a certain span of
time and that can bear a relationship to entities in the world, such as participants or places. In
this sense, the bracketed expressions in both sentences in (6) clearly describe an event, possibly
the same one:

(6) a. [s Angela and Mark dined in a fancy restaurant yesterday evening,]

b. After [np yesterday evening’s dinner in a fancy restaurant], Angela kissed Mark.

However, it is not so clear how these expressions describe the event, and exactly where in the
expressions the event is expressed. Arguably, information about the type of event that is de-
scribed (i.e., a dining event) is carried by the verb ‘dined’ in (6a) and by the noun ‘dinner’ in (6b),
while the other constituents (‘Angela and Mark’, ‘in a fancy restaurant’, ‘yesterday evening’)
further specify the event’s participants and its location in space and time. Both event expres-
sions contain these elements; however, the denotation of the expressions as a whole, at least
in standard model-theoretic semantics, is different: sentences denote truth values (type < t >)
and noun phrases/determiner phrases (depending on your terminology) denote either entities
(type < e >) or functions from properties to truth values (type << e, ¢ >,¢ >). To further
complicate the situation, there also exist other ways to describe events that are, syntactically,
in between noun phrases and sentences:

13



(7) a. [s That Angela and Mark dined in a fancy restaurant yesterday evening] is good
news.

b. After [np (their) dining in a fancy restaurant yesterday evening], Angela kissed
Mark.

c. After [np (their) eating sushi in a fancy restaurant yesterday evening], Angela kissed
Mark.

The event in (7a) is expressed by the same sentence as in (6a), but embedded in a ‘that-clause’.
While the sentence itself has not changed, ‘that” makes it more ‘noun-y’ because it allows it
to occur in the same syntactic context where a noun phrase could also occur (cf. “The officials
claimed falsehoods’, ‘No news is good news’). Meanwhile, (7b-7c) are similar in meaning to
(6b) but is more ‘verb-y’ because ‘dining’ and ‘eating’ are transparently derived from a verb
while ‘dinner’ is not;' moreover, ‘eating’ has a direct object, which normally only verbs can
have.

Thus, there are at least three types of event expressions that, syntactically, behave to some
extent as nominals (‘real’ nouns, that-clauses, and gerunds). However, semantically, they be-
have quite differently:

(8) a. [np Yesterday evening’s dinner] (was/took place) in a fancy restaurant
b. ?? [s That Angela and Mark dined yesterday evening] (was/took place) in a fancy
restaurant.

c. ?? [np Dining in a fancy restaurant yesterday evening] (was/took place) in a fancy
restaurant.

(9)

?? The officials claimed [yp yesterday evening’s dinner in a fancy restaurant]

P

b. The officials claimed [s that Angela and Mark dined in a fancy restaurant yesterday
evening.]

c. ? The officials claimed [np Angela and Mark’s dining in a fancy restaurant yesterday
evening]

d. Angela and Mark claimed [np having dined in a fancy restaurant yesterday evening]

e. [s Angela and Mark dined in a fancy restaurant yesterday evening]. At least, the
officials claimed so.

Apparently, event-denoting noun phrases containing a ‘real noun’ (8a) can be the subject
of predicates that further specify characteristics of the event, but the other types of ‘nominal’
expressions (8b-8c) cannot. By contrast, to ‘claim a dinner’ sounds strange. This is not the case
for that-clauses and gerunds (9b-9d), although gerund sentences where the (implicit) subject
of the gerund agrees with the main clause subject (9d) sound more natural than when there
is an explicit subject (9c). Denial can also be achieved using a pronoun that refers back to a
full (unembedded) sentence, as in (9e). Contrasts as in (8-9) are widely taken as evidence that

'Following the terminology first introduced by the American linguist Zeno Vendler, ‘dinner’ would be either a
‘perfect’ or ‘derived’ nominal, while ‘dining’ would be an ‘imperfect’ nominal; for discussion see Bennett (2002)
and Casati and Varzi (2015).

14



although both sentences and noun phrases can express events, only ‘real’ noun phrases can
directly denote events, whereas sentences, that-clauses, and gerund noun phrases denote facts
(Bennett 2002; Casati and Varzi 2015).

To our knowledge, named events have not been previously addressed in the formal semantics
literature.” However, if we see event names as simply proper names that denote events rather
than other entities, fitting them into the typology of event expressions becomes trivial. As an
example, let’s assume there is an event name uniquely identifying the event described in (6):

(10) [np Yesterday evening’s dinner in a fancy restaurant] made a lasting impression on
Mark. He would later refer to it as [yp The Dinner’].

In formal semantics, proper names are generally defined as special cases of noun phrases
referring to entities. Hence, we expect the event name we introduced in (10) to show exactly
the same behaviour as the NP in (6):

(11) a. After [xp The Dinner], Angela kissed Mark.
b. [np The Dinner] (was/took place) in a fancy restaurant.

c. ?? The officials claimed [np The Dinner].

This is indeed the case; in what follows, we will assume event names have the same semantic
properties as any other event-describing NP.

2.2.2. Events and reference

In this subsection, we discuss two different, but, in our opinion, complementary views on what
events refer to. First, we look at the (Neo-)Davidsonian approach to event semantics, and then
at the more metaphysics-oriented view that events are property instances.

Semantics: events as entities

In the introduction, we already briefly discussed Davidson (1967)’s observation that events
behave in some ways as if they were a kind of ‘things’. Consider the following examples and
sketches of their logical forms:

(12) a. There is a hungry cat in the house.
Jz.[cat(z) A hungry(x) A in_the_house(x))]
b. There is a cat in the house.
Jz.[cat(z) A in_the_house(x))]
(13) a. A brutal fight took place yesterday.
Jz.[fight(x) A brutal(z) A occurred_yesterday(z)]

*However, the 18th-century philosopher Leibniz already noted there existence: “In certain cases, though, there
has been a need to remember an individual accident, and it has been given a name. [...] Religion provides us
with some, for instance, the birth of Jesus Christ, the memory of which we celebrate every year; the Greeks
called this event “Theogeny’ [...]” (quoted in Bennett 2002, p. 3).
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b. A fight took place yesterday.
Jz.[fight(x) A occurred_yesterday ()]

c. The Battle of Waterloo took place yesterday.
occurred_yesterday(battle_of waterloo)

(14) a. The brutal Battle of Waterloo took place yesterday.
a = battle_of_waterloo A brutal(a) A occurred_yesterday(a)
b. The Battle of Waterloo took place yesterday.
a = battle_of waterloo A occurred_yesterday(a)
(15) a. Napoleon fought brutally yesterday.

i. fought_brutally_yesterday(napoleon)

ii. Je.[fight(e) A brutal(e) A occurred_yesterday(e) A AGENT(e, napoleon)]
b. Napoleon fought yesterday.

i. fought_yesterday(napoleon)

ii. Je.[fight(e) A occurred_yesterday(e) A AGENT(e, napoleon)]

In each of these examples, sentence (a) entails sentence (b). In (12), where the subject is an
NP, this entailment is easily captured in the logical form: intersective adjectives like ‘hungry’
are modeled with conjunctions, so that cat(z) A hungry(z) automatically entails both cat(x)
and hungry(z). The same strategy can be used for event-describing NPs and event names (13-
14). For events described in sentences (15), we have the same entailment (the set of individuals
who ‘fight brutally’ is a subset of those who ‘fight’), but using standard predicate logic it is
not possible to model this directly. In a pre-Davidsonian analysis of (formulas (i)), the verb
phrases have to be modeled in a monolithic way that does not take into account the relationship
between the two sentences. To solve this, we would need to model the adverbials ‘brutally’ and
‘yesterday’ as separate predicates (i.e., brutal(x), occurred_yesterday(x)), but the problem is
that it is not clear what these should be predicated of (i.e., what the x stands for). Davidson
(1967) proposed event-describing sentences implicitly assert the existence of an event entity,
which is a ‘silent’ argument of adverbials in these sentences. Parsons (1980) went one step
further and proposed that not only modifiers, but also the arguments (agent, patient, ...) of
verbs are predicates over events. This analysis (called ‘Neo-Davidsonian semantics’) led to
logical forms like the ones in (ii), which allow the verb phrases to be ‘split up’ into separate
predicates, so that we can capture entailments such as ‘fight brutally’ F ‘“fight’.

Ontology: events as properties

A related view from philosophical ontology holds that events are tropes (Bennett 2002). Tropes
are individual instances of properties; for example, if ‘redness’ is a (universal) property, the
redness of a particular red object (e.g., one of the roses in my backyard) is a trope. Similarly,
an event type such as ‘dining’ can be seen as a property of ‘spatio-temporal zones’ (e.g. sets of
points in space and time), and particular dining events are tropes of this property. For example,
the event described in (6) corresponds to the trope possessed by the points in space and time
occupied by Angela and Mark on yesterday evening.
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Under this view, an important question is what happens to complex properties. For example,
suppose a particular event is described by the sentences in (16):

(16) a. Angela and Mark dined happily.
b. Angela and Mark dined.

To how many tropes do these sentences correspond? Some proponents of the events-as-
tropes theory, such as Kim (1966), hold that for complex properties, each of the components
of these properties has its own trope. Hence, ‘dine’ and ‘dine happily’ in (16) correspond to
different tropes, even if these tropes occupy the same spatio-temporal zone. Under this theory,
events are very similar to facts,? because every fact will describe slightly different properties,
which means that for every fact there is a different event (trope). By contrast, according to
Bennett (2002), a ‘rich event’ corresponds to a single, composed trope. For example, there could
be a single event, described by the sentences in (16), which is an instance of the combination
of the properties ‘dining’, ‘being done happily’, and potentially many other properties. Thus,
event descriptions are heavily underspecified: they refer to rich events that are the combination
of many different properties, but only describe a small subset of these.

This second view sounds quite familiar: under Davidsonian event semantics, a formula like
(17) asserts the existence of at least one event that is an instance of a particular set of properties
(in this case, the property of being a dining event, the property of being performed in a happy
way, the property of having Angela and Mark as the agents, etc.).

(17) Je.[dine(e) A performed_happily(e) A AGENT(e, angela_and_mark) .. .|

Instead of just determining the truth value of such a formula, we could also think of it as
the set of events that satisfy it: E = {e € W | dine(e) A ...} (where W is the set of all event
entities). Each of the events in F is likely to have many other properties as well. Thus, both
in Davidsonian event semantics and in Bennett’s theory, events can be seen as instances of the
conjunction of a set of properties. The main difference between the two approaches is that in
Davidsonian semantics, events themselves are purely semantic entities without any internal
structure, while in Bennett’s theory, tropes are possessed by spatial-temporal zones (in the
physical world).

2.2.3. Events and argument structure

In natural language, a crucial feature of event descriptions is that they relate an event to enti-
ties involved in that event (the participants) as well as to properties of the event. If the event is
expressed by a verb, the participants are usually syntactic arguments of the verb. The relation-
ships between a verb expressing an event and its arguments are often referred to as semantic
or thematic roles. For example, in example (16a), Angela and Mark execute the action of dining;
thus, the noun phrase ‘Angela and Mark’ is said to have the AGENT role relative to the verb.

SInformally speaking, facts are whatever it is that makes a true proposition true. According to Bennett (2002),
the main characteristic that distinguishes facts from events is that events do not have a location in space and
time (the fact that Angela and Mark dined yesterday is still true today and also on the other side of the world,
whereas the event happened yesterday at a specific place).
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For events expressed by nouns, the syntactic relationship between the event noun and the par-
ticipants is less clear; it is sometimes expressed by adjectives (e.g. ‘a brutal fight’ (13a), where
‘brutal’ expresses the manner in which the event happens), or by genitives (e.g. ‘Napoleon’s
death’)

There exist different typologies for labeling semantic roles; some of these try to cover all
possible event relations with a small set of ‘universal’ roles. However, designing such a set is
very difficult; in practice, it is more useful to use a more fine-grained set of roles for specific kind
of events. A theoretical framework that uses this second approach is frame semantics (Fillmore
1977). According to frame semantics, we conceptualize the world using frames, which are
abstract representations of kinds of events and situations and the participants associated with
these. In linguistic expressions, certain words are said to evoke (bring to mind) the frame related
to the situation that the expression refers to. In computational linguistics, frame semantics is
best known for FrameNet (Baker et al. 1998), a lexical database that consists of more than 1200
frames and more than 13,000 word senses that are connected to these frames. An example* of a
frame is Revenge, which represents a situation involving two participants, A and B, where A has
harmed B and B takes revenge. The frame can be evoked by various lexical units (or targets),
e.g., revenge’ (noun), ‘retaliate’ (verb), or ‘vengeful’ (adjective). The semantic roles of the frame
(called frame elements) include avenger, offender, injury, injured_party, and punishment. Not all
frame elements have to be expressed in a given sentence; for example, in (18), we only find
punishment, avenger, and injury; the targets is ‘avenge’:

(18) (FrameNet code: 429-s20-rcoll-death)
[punisumvenT With this], [avenger El Cid] at once avenged [INJURY the death of his son]
and showed that any attempt to reconquer Valencia was fruitless while he still lived.>

The theory of frame semantics, as well as FrameNet, is useful to the vision on named events
that we are developing here, for two reasons. First of all, while much of the literature on event
argument structure is about verb phrases, frames specify a set of semantic roles that can be
evoked by frame elements of any syntactic type (i.e. also by event names). Thus, we can use
the concept of frames to connect our work about named events to theories about events in
general. Second, we will use the idea of event type-specific semantic roles when defining our
event dataset and in part make use of existing FrameNet frames.

2.2.4. Putting it all together

In this section, we have discussed different elements from linguistic and philosophical theories
that are useful for understanding the semantics of named events. In this final subsection, we
try to put these elements together to form a consistent whole. This is by no means meant as a
‘grand theory’ of events, but rather as a framework that helps us interpret our findings about
named events in a broader perspective. This framework is schematized in Figure 2.1.

“Taken from the slides at https://framenet.icsi.berkeley.edu/fndrupal/CJFFNintroPPT
SFrom https://framenet2.icsi.berkeley.edu/fnReports/data/lu/1u6056.xml?mode=annotation&
banner=
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Figure 2.1.: Schema of our theoretical framework

Our framework consists of three components: LANGUAGE, MEANING, and WORLD. WORLD,
at the bottom of the scheme, stands for the physical world, as perceived by humans,® which
contains objects that are defined in terms of space (three dimensions) and time (i.e., four di-
mensions in total). These objects possess various tropes (instances of properties). We assume
that tropes include events (following Bennett 2002) and also properties associated with these
events. As an example of a named event, let’s consider the Battle of Waterloo. This battle
would correspond to an object that can be defined as a set of points in 4D-space, that together
include all of the participants in the battle (e.g., the soldiers, the weapons, the battlefield, de-
stroyed buildings, etc.) during the time spans that these were involved in the conflict. Then,
the tropes of this object would include the ‘battle’ event itself, as well as properties associated
to the event such as that the French army was one of the parties in the conflict, that n many
people were killed or injured, etc. We interpret the raw, factual data that we extract from
Wikipedia infoboxes (see section 3.2) as referring to tropes.

Next, MEANING is an intermediate level between WoRLD and LANGUAGE, and can be thought
of as amental, more abstract representation of the objects in World. We adopt a Neo-Davidsonian

5We assume that, while it might be impossible to have objective knowledge of the ‘real world’, to a certain extent,
people perceive the world in a similar way. We define WorLD to stand for this shared perception of the physical
world.
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view of the representations of events. Each of the event tropes in WoRLD corresponds to an
event entity in MEANING, and the other tropes correspond to predicates over this event. There
can be, in theory, indefinitely many tropes associated to every event, but not all of these are
important for the mental representation of the event. In order to select the tropes that form the
basis for the semantic roles associated with the event, for each of the event types in our dataset
we define a frame specifying a set of frame elements. Following Bos and Nissim (2008), we
equate frame elements with Neo-Davidsonian semantic role predicates and frame targets (i.e.,
event names) with event entities. Moreover, we make the tropes themselves more abstract.
For example, we define a frame Battle that defines semantic roles for battle events; one of these
roles, strength, describes the intensity of the battle (in terms of how many soldiers participated
in it). In WORLD, a trope corresponding to strength could be an instance of the property of
there being 10,000 soldiers participating in the event. We do not assume conceptual represen-
tations of battles to contain this level of detail,” and thus, in Meaning, this trope is mapped to
a predicate has_large_strength. In our prediction experiments (Chapter 6), we will try to learn
mappings from distributional representations to these predicates (which we call “attributes’ in
the context of the experiments).

Finally, LANGUAGE is the level of the scheme defining linguistic expressions of named events.
In our experiments, we work with two types of expressions of these events: the event names
themselves, and encyclopedic definitions of the names. For example, for the Battle of Waterloo,
our dataset includes the name ‘Battle of Waterloo’ and the definition “The Battle of Waterloo
was fought on Sunday, 18 June 1815, [...] The battle marked the end of the Napoleonic Wars”.
These linguistic expressions are linked to MEANING in two ways: they can invoke a particular
frame, and they relate to a particular event entity.®

2.3. Distributional representations of individual entities

Unlike formal, truth-theoretic models of semantics, distributional models do not make direct
reference to the extra-linguistic world. However, distributional representations can still, indi-
rectly, encode world knowledge. Gupta et al. (2015) investigated the referential properties of
Word2Vec (Mikolov et al. 2013) representations of country and city names. For each country
or city, a set of numerical and categorical attributes (e.g. number of inhabitants, continent)
was retrieved from FreeBase® and a logistic regression model was learned mapping the dis-
tributional space to a vector space where every dimension represents a referential attribute.
In this space, categorical attributes are represented with a dimension for every class (e.g.
member-of : :world_bank, member-of : : UN, etc.), whose value (in {0, 1}) indicates member-

7Although this might differ from person to person, for example, historians would be expected to have a much
more detailed mental representation of battles than laypeople.

8We assume here that event descriptions have the same meaning as the event names that they define, even though
this is not necessarily true: event descriptions are (sequences of) sentences and, as such, under Neo-Davidsonian
event semantics they correspond to a proposition following the pattern ‘there exists an event e such that ...,
which in turn corresponds to a set of entities that make this formula true. To simplify our framework, we make
the assumption that the definitions are always sufficiently detailed to make sure that this set only includes one
entity, i.e. the one that the corresponding event name refers to.

*https://developers.google.com/freebase/, now deprecated.
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ship of that class. Numerical and categorical attributes were evaluated separately, using rank
scores and accuracy, respectively. The results were generally very positive, although there
was much variation between the predictability of different attributes. Amongst the attributes
with the best prediction scores were geo-location attributes (longitude and latitude, continent)
and economy-related statistics (e.g. GDP, CO2 emissions). Especially the finding about geo-
location is interesting for our purposes, since ‘place’ is also a relevant feature for many events.

Several other studies (Johns and Jones 2012; Fagarasan et al. 2015; Herbelot and Vecchi 2015)
have related distributional representations to information about the real world by predicting
features from the McRae norms (McRae et al. 2005), a dataset describing properties of animals
and inanimate objects, as judged by human participants (e.g. ‘airplanes have wings’, ‘alliga-
tors are scary’). Note that this is world knowledge of a different kind than the country and
city attributes in Gupta et al. (2015)’s study: the McRae norms are more subjective, and, more
importantly, describe information on the level of concepts (or kinds) rather than of individual
entities such as cities and countries. Herbelot and Vecchi (2015) is the McRae-related study
whose approach is most comparable to ours: the authors propose a model for mapping distri-
butional representations of concepts to a ‘truth-theoretic’ space whose dimensions represent
quantifiers (e.g. if the vector for ‘cat’ has the value 0.95 for the attribute has_four_legs,
this corresponds to the natural language sentence ‘most cats have four legs’). The mapping is
evaluated by calculating the Spearman correlation between the predicted and true quantifier
values.
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3. Event dataset

3.1. Event types

The event dataset includes three types of events: hurricanes, concert tours, and battles. These
categories were selected based on two criteria: (1) the availability of a large number of Wikipedia
articles for individual events and (2) the availability of a consistent and easily parseable set of
referential attributes in the ‘infoboxes’ in each article (see Figure 3.5 for an example). In this
section, for each of the three event types, we discuss what the events are like in the real world,
how they can be conceptualized in terms of frames and semantic roles, and introduce a set
of finer-grained predicates based on these semantic roles. For example, if a particular frame
includes the element Time, the associated predicates could be recent_year, non-recent_year, etc.
In Chapter 6, these predicates will be used as feature-attribute pairs in our classification exper-
iments (e.g. the predicate non-recent_year would correspond to the attribute-value pair (year,
non-recent)). The full list of attributes is given in Table 3.1.

3.1.1. Hurricanes

Hurricanes are extreme weather events with a number of special characteristics that distinguish
them from other storms: for example, they involve very strong winds, have a special shape (the
winds move in a circle around the ‘eye’ of the hurricane), and only occur in specific areas of
the planet. Hurricanes are not stationary but form in oceans and then move towards land,
gaining energy while moving until they hit the shore. Figure 3.1 shows the pathways of all
hurricanes in the recent era; most hurricanes occur on the Atlantic coast of North America,
on the the Pacific coast of East-Asia (where they are known as ‘typhoons’), and in the South
Pacific (where they are known as ‘cyclones’). Hurricanes are classified on the Saffir-Simpson
scale® which has five categories based on wind speeds. Additionally, there are similar, but less
extreme weather events: tropical depressions and tropical storms. For the sake of simplicity,
we will refer to all of the events as ‘hurricanes’.

Hurricanes are interesting for our study because they are given names. This is done by
official bodies (in modern times, this is done by the World Meteorological Organization3) in
order to make it easier for the media and the public to refer to a particular hurricane. Lists are
chosen from a pre-defined lists in alphabetical order. There is a separate list for every year;
lists are re-used every six years. Thus, hurricane names are not strictly unique; however, the
names of very destructive hurricanes (e.g., ‘Katrina’, ‘Sandy’) are retired from the lists.

Wikipedia infoboxes for hurricane events include the entries:

'On Wikipedia, infoboxes are the tables found in the upper right-hand corner of an article containing structured
information, often using a fixed format for a particular kind of article.

*https://en.wikipedia.org/wiki/Saffir-Simpson_scale

Shttps://public.wmo.int/en/About-us/FAQs/fags-tropical-cyclones/tropical-cyclone-naming
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Event/Attribute Abbreviation Type of underlying data ~ Num. events Example
Hurri Hurricane
urricanes 1241 Isodore
Area (binary)* AINS, ArWE  Categorical (hemispheres) 1185/ 1144 north / west
Area (four-way)* Ar Categorical (quadrants) 1137 north-west
Category (binary) Ca Categorical (weak/strong) 1186 strong
Category (SSHWS scale) Ca Categorical (7 categories) 1186 3 ('major’)
Damage Da Numerical (US$) 1053 1.28 bln
Duration Du Numerical (days) 1216 13
Fatalities Fa Numerical (#) 1200 22
Pressure Pr Numerical (hPa) 1191 934
Wind speed Wi Numerical (km/h) 1208 125
Year Ye Numerical 1216 2002
McCartney
Concert tours 1978 World Towr
Duration Du Numerical (days) 1884 306
Legs (cities) Le Numerical (#) 1650 9
Year Ye Numerical 1884 1989
Battle of
Battles 6138 Waterloo
Area (binary) ArNS, ArWE  Categorical (hemispheres) 3264 north / east
Area (four-way) Ar Categorical (quadrants) 3264 north-east
Belligerents Be Numerical (#) 5981 8
Involved US InUS Categorical (true/false) 5981 false
Involved France InF Categorical (true/false) 5981 true
Involved Spain InS Categorical (true/false) 5981 false
Strength (ratio)** StR Numerical (%) 1294 n/a
Strength (total)™* StT Numerical (#) 1294 n/a
Year Ye Numerical 6111 1815

Notes: * hemispheres: east/west of the Greenwhich meridian or north/south of the equator.
Quadrants: north-east, south-east, .... ** Strength = number of soldiers; ‘total’ is the strength summed
over both sides of the conflict; ‘strength’ is the strength of the weakest side as a percentage of the
strength of the strongest side.

Table 3.1.: Events and attributes
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Tropical Cyclones, 1945-2006

Saffir-Simpson Hurricane Scale:
tropical tropical hurricane | hurricane  ['htrricane |  [JRURTcane m
depression storm category category 2 | category 3 |category 4
From https://en.wikipedia.org/wiki/Tropical_cyclone#/media/File:

Tropical_cyclones_1945_2006_wikicolor.png, used under a BY-SA 3.0 licence
(https://creativecommons.org/licenses/by-sa/3.0/)

Figure 3.1.: Map of historical cyclones

« At the top of the infobox: name, hurricane category
« Dates: ‘formed’, ‘dissipated’, ‘extratropical after’ (optional)

« Meteorological properties: ‘highest winds’ (organized by duration, e.g., “10-minute sus-
tained: 185 km/h; 1-minute sustained: 230 km/h”), ‘lowest pressure’

« Consequences: ‘fatalities’, ‘damage’ (in dollars), ‘areas affected’

Following the theoretical framework sketched in the previous chapter (section 2.2.4), we
interpret the infobox attributes as defining the event in WoRrLD. The raw values given in the
infoboxes (as well as the hurricane event itself) as tropes of the four-dimensional physical
object O within which the event took place. For example, if a hurricane has the value ‘925
hPa’ for the attribute ‘lowest pressure’, this is interpreted as an instance of the property ‘O
having a minimal air pressure of 925 hPa’. Note that these properties are very fine-grained: if
two hurricanes have slightly different air pressure values, this will automatically lead to them
having instances of different properties as well.

Next, we connect these properties to semantic roles in the MEANING of the event. Our roles
are similar to the Weather frame? in FrameNet. This frame is defined as “Ambient conditions
of temperature, precipitation, windiness, and sunniness pertain at a certain Place and Time.
Further Specification of the conditions that pertain may also be indicated” (where Place, Time,
and Specifications are frame elements/semantic roles). An example of a sentence annotated
with this frame is (19):

‘https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Weatherd
banner=
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Legend: Black/gray boxes correspond to FrameNet frames and elements; red/light red boxes correspond to our
extension of the Weather frame. Blue boxes correspond to attributes.

Figure 3.2.: Conceptual scheme for hurricanes

(19) (FrameNet code: 429-s20-1gov-after)
Some of the 500 people forced to leave their homes after [\ Thursday’s] [speciricaTiON
freak] storm [prace in the Llandudno and Conwy areas] believe it could be several
months before they are able to return to their homes.

We propose a new Hurricane frame, which is an extended version of the Weather frame,
but with an extra frame element Effects corresponding to negative consequences (such as
killed or injured people and material damage) of the hurricane event. Furthermore, we pro-
pose predicates that form a bridge between the fine-grained tropes discussed above and the
coarse-grained semantic roles. For example, the air pressure tropes correspond to the predi-
cates has_high_air_pressure, has_medium_air_pressure, etc. This leads to the conceptual struc-
ture schematized in Figure 3.2. The following is an example of how this conceptual structure
can be applied to the first sentence of the Wikipedia definition of hurricane Sandy® (we indicate
both frame elements and predicates):

(20)  Hurricane Sandy (unofficially referred to as Superstorm Sandy) was the [grrecTs/high fatalities
deadliest] and [ErreCTS/high damage MOst destructive] hurricane of the [TivE/recent_year 2012]
Atlantic hurricane season.

In our prediction experiments, our hypothesis will be that both distributional representations
of event descriptions (as in (20)) and of event names can implicitly capture this conceptual
structure.

Shttps://en.wikipedia.org/wiki/Hurricane_Sandy
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3.1.2. Concert tours

A concert tour is “a series of concerts by an artist or group of artists in different cities, countries
or locations”® Concert tours can take a long time (months or years) and consist of several legs:
subdivisions of the tour that are based on the locations, dates, and/or content of the concerts
in the tour. Wikipedia infoboxes for concert tours have the following entries:

« At the top of the infobox: tour name, artist name, associated album

« Dates: ‘start date’, ‘end date’

+ Route/length: ‘number of legs’, ‘number of shows’ (often split by country/continent)
« Results: ‘box office’ (in dollars), ‘number of visitors’

Unfortunately, some of these entries are only present for a very limited number of articles
(such as ‘box office’ and ‘number of visitors’) or too difficult to parse (such as ‘number of
shows’); others, such as the associated album or the artist, are interesting from a semantic
point of view but would be too difficult to predict and are therefore excluded from our dataset.

Again, we assume these entries to correspond to tropes in the WoRLD part of our theoreti-
cal framework. Moving to MEANING, the most relevant frame in FrameNet for concert tours is
Travel, which defines a “Traveler [who] goes on a journey, an activity, generally planned in ad-
vance, in which the Traveler moves from a Source location to a Goal along a Path or within an
Area. [...] The Duration or Distance of the journey, both generally long, may also be described
as may be the Mode_of_transportation. [...]"7 The frame includes many frame elements, most
of which are not very salient for concert tours (e.g. ‘co-participant’, ‘baggage’, ‘mode of trans-
portation’) and for which we do not have any data. Thus, the Concert_Tour frame that we
propose here uses a subset of the semantic roles in the Travel frame. The conceptual structure
of Concert_Tour and its associated predicates is given in Figure 3.3; example (21) is a sentence
annotated with the original Travel frame, evoked by the lexical unit tour and example (22) is
the first sentence of the Wikipedia definition of the Paul McCartney World Tour® annotated
using Concert_Tour and its associated predicates.

(21) (FrameNet code: 250-s20-ppthrough)
[tivg In autumn 1903] [TraveLer she] made a [peans walking] tour [path through France]
[co-parTicIPANT With Dorelia McNeill, later Augustus John ’s companion.

(22) The Paul McCartney World Tour was a [pATH/high_number of legs WOTldwide] concert tour
bY Paul MCCartneY [TIME/medium_duration during [TIME/medium_recent_year 1989] and 1990]-

3.1.3. Battles

A battle “is a combat in warfare between two or more armed forces [...] [and are] generally
are well defined in duration, area, and force commitment.”® Battles are usually part of a war,

https://en.wikipedia.org/wiki/Concert_tour
"https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Travel
*https://en.wikipedia.org/wiki/The_Paul_McCartney_World_Tour
‘https://en.wikipedia.org/wiki/Battle
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Legend: as in Figure 3.2.

Figure 3.3.: Conceptual scheme for concert tours

which is much longer and less-well defined type of event. Wikipedia battle infoboxes contain
the following entries:

« Above the infobox: battle name, campaign/war that the battle is part of;

« General information: ‘date’, ‘location’ (sometimes including geo-coordinates), ‘result’
« Parties: ‘Belligerents’, ‘Commanders and leaders’ (split by side)

« Size: ‘Strength’ (number of soldiers, machinery, etc.; split by side)

« Consequences: ‘Casualties and losses’ (split by side)

We connect this factual information (i.e., tropes in WoRLD) to a frame in MEANING. The most
relevant frame in FrameNet is Hostile_encounter, which describes “a hostile encounter between
opposing forces (Side_1 and Side_2, collectively conceptualizable as Sides) over a disputed Issue
and/or in order to reach a specific Purpose”*® An example of this frame from FrameNet is (23):

(23) (FrameNet code: 250-ppagainst)
He was later reputed to have played a role in the [prace sea] battle [sipg_, against the
French] [pracg off Sandwich] [tpvg in 1217].

The frame has many different frame elements, only a few of which are directly applicable to
the information that is available to us. For example, the frame element Explanation would be
very relevant to include in our scheme, but Wikipedia infoboxes for battles do not include this
information. Thus, our Battle frame uses a subset of the Hostile_Encounter frame. Figure 3.4
shows our Battle frame and its associated predicates/attributes, and example (24) applies this
frame to the first sentence of the definition of the Battle of Waterloo:'*

(24) 'The Battle Of Waterloo was fought [TIME/medium_recent_year on Sunda}’, 18 June 1815]
[PLACE/north_east_hemisphere N€ar Waterloo in Belgium, part of the United Kingdom of the
Netherlands at the time].

“https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Hostile_
encounter&banner=
"https://en.wikipedia.org/wiki/Battle_of_Waterloo

27


https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Hostile_encounter&banner=
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Hostile_encounter&banner=
https://en.wikipedia.org/wiki/Battle_of_Waterloo

Hostile_encounter

Battle

# of belligerents

Country involved
Strength (ratio)

Strength (total)

Figure 3.4.: Conceptual scheme for battles

3.2. Wikipedia scraping

We compiled the dataset by retrieving articles for events of our three types from Wikipedia.
First, we found relevant articles using Wikipedia’s category hierarchy. Then, we retrieved
each of these articles and extracted its first paragraph and its infobox. In some cases, we also
retrieved extra information about an article, either from that article itself or by following links
to other pages. Finally, we parsed the infoboxes and processed them in order to obtain as much
structured, machine-readable information as possible.

3.2.1. Finding relevant pages

Relevant articles were found using category pages: special pages that provide lists of articles
and/or other category pages about related topics. The articles for each of our event types have
a different category structure; see Figure 3.6 for an overview. We adapted our strategy for
finding articles to each of these categories.

Hurricanes

Hurricanes were found by doing starting from the category page ‘Tropical cyclones by re-
gion’,"> which forms the root of a somewhat complicated hierarchy of category pages and
hurricane articles. Directly below the root are categories for hurricanes by continent. The
structure and the depth of these subtrees varies from continent to continent; for example, for
Europe, most hurricanes are listed directly at the continent level, while for North America the
hierarchy is deeper. In many cases, category pages and hurricane pages are listed on the same
level; for example, the category ‘Hurricanes in the Caribbean’ contains both the sub-category
‘Hurricanes in the Caribbean by country’ and the hurricane page ‘Hurricane Matthew’. We
found the set of hurricane articles by doing a full traversal of the tree, at every level saving the
URLs of hurricane articles and following links to sub-categories until there were none left.

To get a list of unique hurricane pages, two types of filtering were needed: removing du-
plicate URLs, and removing pages that were listed in the hierarchy but do not describe an

https://en.wikipedia.org/wiki/Category:Tropical_cyclones_by_region
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Figure 3.5.: Example event descriptions and infoboxes (https://en.wikipedia.org/
wiki/Hurricane_Isidore, https://en.wikipedia.org/wiki/The_Paul_
McCartney_World_Tour, and https://en.wikipedia.org/wiki/Battle_
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Figure 3.6.: Tree structure of event categories and pages. Category pages printed in bold, event
pages printed in italics, and pages to be removed marked with a warning sign.
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individual hurricane. An example in figure 3.6 is ‘Hurricanes and the making of Caribbean
History’, which is about hurricanes in general and hence not interesting for our purposes.
Other examples include pages listing hurricanes that do not have their own page and pages
summarizing hurricane seasons; these pages are potentially interesting but do not follow the
same format as pages for individual hurricanes and were discarded for that reason. Filtering
these out happened at two different stages: first, by checking the URLs of article pages against
a set of heuristics (e.g. whether the URL starts with “Timeline:’” or whether it includes the
word ‘season’), and later, when retrieving pages to extract information, checking whether or
not they have a hurricane infobox and excluding them when they do not.

Concert tours

Concert tours were found using the category page ‘Concert tours by artist’*? and finding all
the subcategories for tours of specific artists listed on that page. Then, for each artist category
page, we retrieved all of the tour pages listed on that page. Some artist category pages had
further subcategories, but we ignored these as they were in many cases duplicates (e.g., the
category ‘Paul McCartney concert tours’ contains the subcategory ‘“The Beatles concert tours’,
which is also listed directly under the ‘Concert tours by artist’ category).

Battles

Battles were found through two types of category pages: category pages for years (e.g. ‘Con-
flicts in 2019’) and category pages for decades (e.g. ‘1550s conflicts’). The former exist for many
years, especially relatively recent ones (from the middle ages); decade pages go back further in
time (until the 490s BCE). We found all year and decade pages by generating the URLs of all
possible pages (from the year o for year pages and from the 500s for decade pages) and then
checking which URLs exist. Then, for all of the category pages, we found the list of conflict
pages that each page linked to. The next step was removing duplicates and pages for conflicts
that are not battles (but lists of battles, or more long-term conflicts such as wars). For deciding
which conflicts were actual battles, we first checked whether the URL contained ‘battle’ or not,
and then, after retrieving the page, we checked whether there was a battle infobox or not.

3.2.2. Extracting information

For each of the event pages that we found, we were interested in at least two parts of the page:
the first paragraph, and the infobox. For battles, we additionally looked for the geo-coordinate
component located in the upper-right of the page (which is a simple hyperlink listing the GPS
coordinates of a location where the event took place, e.g. Coordinates: 48.8566°N 2.3518°E; the
component links to a GeoHack'4 page that gives more information about the coordinates as
well as links to online mapping services). For extracting these components of the page, we
first retrieved the HTML code of the page and then parsed it using the BeautifulSoup library

“https://en.wikipedia.org/w/index.php?title=Category:Concert_tours_by_artist
“https://tools.wmflabs.org/geohack/geohack.php
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for Python."> We found the first paragraph by looking for all <p> tags and selecting the first
one with more than 10 words (we added this condition because on some pages, there are short
pieces of text marked with <p> tags before the first real paragraph). Infoboxes were found by
looking for a <table> with class infobox vevent. Finally, where applicable, geotags were
find by looking for a span with the ID coordinates.

Once the infoboxes were found, we extracted as many referential attributes as possible from
them, within the limits of machine-readability. An example of a hurricane infobox together
with the structured information that we parsed from it is given in Figure 3.7. Our main chal-
lenge was that not all infoboxes have the same entries, and entries do not always have a uniform
format. For example, dates are sometimes given in the American format (‘September 14, 2002°)
and sometimes in the British format (‘14 September 2002’). We addressed this by first using
regular expressions to detect which of these formats (if any) a date was formatted in, and then
passing the date, together with the appropriate format string, to Python’s strptime () func-
tion.'® More difficult were numerical attributes consisting of several, varying sub-components
such as casualties (hurricanes and battles) or army strength (battles). For these attributes,
sometimes a total is given, but in other cases, only individual components are listed; for exam-
ple, casualties could be listed as ‘x casualties, including y captured’ (for battles), ‘x deaths, y
missing’, (for battles and hurricanes) x direct, y indirect’ (only for hurricanes). These expres-
sions are too complex to extract in a structured way; hence, we had to make (rather arbitrary)
decisions about how to extract a machine-readable value for them. For hurricane fatalities, the
strategy we chose was to sum all of the listed numbers. Doing this implies that our numbers do
not have a consistent interpretation across the dataset; however, we think this is not a problem
for our purposes: our interest is in the approximate ‘magnitude’ of a hurricane event (rather
than the precise number of victims) as perceived by observers (and presumably reflected in
language use).

Another challenge were attributes that whose values are always structured in the same way,
but have a complex structure; for hurricanes, examples of this are ‘highest winds’ and ‘affected
areas’. Atthe parsing stage, we aimed to preserve as much information as possible (for example,
from the ‘affected areas’ field of hurricanes we extracted both a list of the names of the areas
and a list of the URLs of the corresponding Wikipedia pages), while later, when defining our
classification problems, we simplified the information to make it more feasible to predict. For
example, for ‘affected areas’, we mapped the extracted lists of areas to earth quadrants (i.e.,
‘north-east’, ‘south-east’, ‘south-west’, ‘north-west’) by retrieving their Wikipedia pages and
parsing their geo-coordinates.

“https://pypi.org/project/beautifulsoupd/
“https://docs.python.org/3.6/library/datetime.html#strftime-strptime-behavior
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Figure 3.7.: Example of extracted structured information from an infobox (colored dots indicate
corresponding attributes)

33



4. Representations 1: Event description modeling

4.1. Background

The first approach to representing named events that we experimented with is to construct
distributional representations of encyclopedic descriptions of these events. This approach is
based on the hypothesis that a description of a particular event can be used as a proxy for the
contexts in which the event occurs. For example, if, in natural text, the name of a particular
hurricane co-occurs frequently with words like ‘destructive’, ’devastating’, ..., we could use
this to make inferences about the (perceived) severity of the hurricane. These words are also
likely to occur in an encyclopedic description of that same hurricane. Our assumption is that,
because encyclopedic descriptions are designed to capture the most salient information about
a given event, the lexical content of the description will, to some extent, be representative of
the contexts that an event will frequently occur in. Following this assumption, we can con-
struct a composed representation of an event description and use it as if it was a distributional
representation of the event name.

Our approach is not new but draws on several ideas from the literature about distributional
representations for infrequent words. First, the hypothesis that the distributional representa-
tion of a word can be approximated by a composed representation of a text fragment in which
it occurs comes from Lazaridou et al. (2017). This study investigated how well distributional
semantic models can approximate the human ability to learn new concepts from only a few
examples. The authors did this by constructing a corpus of short text passages describing non-
existing ‘chimera’ words (whose meaning is a combination of the meanings of two existing,
related words), and representing these words by summing distributional vectors of the words in
the passages in which the chimera words occur.’ These vectors were then tested in a similarity
judgement task where chimera words are compared to existing words; impressively, the dis-
tributional model approximated human performance on this task. Moreover, the idea of using
encyclopedic definitions as a proxy for a maximally informative context was introduced in Her-
belot and Baroni (2017), who construct a ‘definitional nonce dataset’ consisting of one-sentence
Wikipedia definitions. This dataset was designed for testing the performance of distributional
representations derived from small data; this was done by calculating the distances between
representations derived from the Wikipedia definitions and a standard representation of the
same word derived from a large corpus. One of the models that was tested was Lazaridou et al.
(2017)’s summing approach, which again turned out to work well.

We had several reasons for first trying definition-based representations, before moving on
to directly computing distributional vectors for event names (see the next chapter). First of all,

'In Lazaridou et al. (2017)’s original study, multi-modal word vectors were used that incorporate both distribu-
tional and visual information; however, Herbelot and Baroni (2017) showed that the summing approach can
also be successfully applied to purely distributional vectors.
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event names are relatively rare; for example, as we will see in the next chapter, only a small
subset of the battle events in our database occur more than 50 times in the Wikipedia corpus.
Another practical reason is computational cost: training high-quality representations requires
processing large corpora (e.g. Google News), which is costly and which we wanted to avoid in
our initial experiments.

A more fundamental reason is that, while this thesis is about named events, we are are not
exclusively interested in event names, but rather in comparing different linguistic forms that
can express events. In everyday language, most of the events that we talk about ("Mark kissed
Angela’) do not have a name but are denoted by sentences or even discourses. Named event
descriptions can be seen as a special case of event-describing sentences, so modeling these
distributionally is interesting in and of itself.

4.2. Approach and methods

We try several techniques for distributionally representing the content of event definitions.
Composing distributional representations of individual words is a complicated problem (Ba-
roni 2013). While in theory, approaches uniting formal and distributional approaches would
be most attractive as they combine the strengths of both approaches (formal model of semantics
are designed to capture compositionality, whereas distributional approaches are good at cap-
turing lexical meaning) (Baroni et al. 2014b), such unified models are still underdeveloped. By
contrast, simplistic approaches to compositional distributional semantics, such as summing the
vectors for individual words to obtain a representation for a larger unit such as a sentence are
known to work surprisingly well (Mitchell and Lapata 2008). However, an obvious downside
of such models is that they are unable to capture any syntactic or contextual information (e.g.
the representation of ‘Mark kissed Angela’ will be identical to that of ‘Angela kissed Mark’).?

Recent research in deep learning could offer an alternative way to capture contextual and
syntactic information without explicitly using any formal machinery: contextualized deep neu-
ral embedding models such as ELMo (Peters et al. 2018) or BERT (Devlin et al. 2018). These mod-
els, unlike traditional word embeddings, do not assign a fixed representation to each word in
the vocabulary, but compute word representations that take into account the context in which
the word occurs, implicitly capturing information about word senses and syntactic structure.
We think that experimenting with these representations is interesting for our task for two rea-
sons. On one hand, such models have been shown to produce good semantic representations
for various semantic tasks, so it is not implausible that they could work well for our task as
well. On the other hand, little is known yet about what semantic information these models
capture and how (but see Gulordava et al. 2018; Baroni 2019). Since our task is exactly aimed
at ‘probing’ the semantic content of distributional representations, it might help us better un-

*This is true for summing standard distributional vectors; however, there have been efforts to incorporate infor-
mation about the syntactic contexts of words in distributional representations (Pad6 and Lapata 2007; Baroni
and Zamparelli 2010).

*Note that these models did not ‘invent’ contextualized word embeddings but merely popularized them,; the idea
of incorporating contextual information in distributional representations goes back to much earlier work such
as Erk and Padé (2008), Erk and Padé (2010), and Thater et al. (2010).
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derstand how contextual models represent meaning and for what kind of semantic tasks they
work well.

We performed experiments with summed representations and several types of represen-
tations extracted from BERT. In the remainder of this section, we explain both of these ap-
proaches in more detail.

4.2.1. Summing

Summing word vectors, and related methods such as averaging them, have been investigated
as ways to obtain compositional representations since the very early days of distributional se-
mantics (Landauer and Dumais 1997; Landauer et al. 1997). If the dimensions of a distributional
space are thought of as semantic features, summing word vectors corresponds to finding the
union of the semantic features, yielding a representation of all of the lexical content in a sen-
tence or text passage. While this representation does not take into account word order, it has
been hypothesized that in many cases, ‘scrambled’ texts could be reconstructed even without
this information (Landauer et al. 1997). For our purposes, additive models are interesting for
testing how much semantic information can be reconstructed from such ‘poor’ representations
that only take into account lexical content, and nothing else.

Our approach to creating summed vectors for event descriptions (from now on referred to as
GloVe-Summed) takes as a starting point a pre-trained GloVe model (Pennington et al. 2014).*
Vectors from this model are retrieved for the set of content words in each event description, and
then computing a simple (unweighted) sum over these. Finding content words is done through
a simple pipeline, implemented using NLTK (Bird et al. 2009), consisting of the following steps:
(1) word tokenization; (2) lemmatization using a WordNet lemmatizer; (3) lowercasing; (4)
removal of stopwords, digits, and duplicate words. This last step is important as it makes sure
that only purely lexical information survives into the vectors. Particularly, we hypothesize that
removing numbers will make it harder for predictive models to ‘cheat’ by making use of year
numbers for predicting temporal attributes. By impoverishing the summed vectors in this way,
we hope to get an idea of the lower bound on the amount of non-lexical information needed
for encoding referential properties of events.

4.2.2. BERT

BERT (Devlin et al. 2018) is a recent deep learning model that takes as input a sentence (or
an arbitrary piece of text of up to 512 word tokens) and produces a representation for that
text. The defining characteristic of BERT is that it is built around a transformer encoder. Trans-
formers (Vaswani et al. 2017) are a new type of neural network model for learning patterns in
sequential data, and are intended as a replacement for existing sequence models such as Re-
current Neural Networks (RNNs). A key mechanism of transformers is self-attention: in each
of the layers in the model, the representation of every input token is computed as a weighted
sum of the learned representations of all of the other tokens in the input sequence. A highly
simplified example could be the following: in a sentence like ‘Mary went to the bank to with-
draw money’, the model might learn that, for the word ‘bank’, the words that are most relevant

*Version 42B.300d, obtained from https://nlp.stanford.edu/projects/glove/.
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to its contribution to the sentence are ‘bank’ itself, but also ‘money’ and ‘withdraw’, and as-
sign relatively high weights to these words while assigning lower weights to the other words.
These weights are then used to compute the representation of ‘bank’ that will be passed on
to the next layer of the model; this representation will not just contain information from the
previous representation of ‘bank’ itself, but also from the representations of ‘money’ and ‘with-
draw’. Hence, unlike in traditional word embedding models like GloVe, word representations
in the output of BERT are contextualized and can implicitly encode information about word
senses and syntactic dependencies.

BERT is designed to be pre-trained on two tasks: masked language modeling (i.e., given a
sentence in which one or more words are ‘hidden’, predict which words these are) and next-
sentence prediction (i.e., given two sentences, how likely is it that the first sentence is the
continuation of the next one?). There are two methods for using BERT: fine-tuning and feature
extraction. When using fine-tuning, a model designed for a specific task (which could be any-
thing from POS-tagging to sentiment analysis) is added on top of BERT, taking BERT’s output
as input. When training for this specific task, all the combined model’s parameters (both those
of BERT and those of the ‘extra’ model) are optimized. By contrast, using feature extraction,
BERT’s outputs are used as-is: they can be used as the input for another model, but during
training, only that model’s parameters will be updated, leaving BERT itself ‘frozen’. Choosing
which of these methods to use depends on the specific situation at hand (see Peters et al. 2019
for an overview of how to use both methods); here, we will only use the feature extraction ap-
proach since we would like to compare BERT’s representations with traditional distributional
methods.

Given its newness and complicated architecture, much is still unclear about how exactly
BERT works and for which tasks it works well. While (fine-tuned) BERT models achieved
state-of-the-art performance on semantic tasks such as the SQUAD question answering task
(Rajpurkar et al. 2016) and the GLUE benchmarks (Wang et al. 2018), not much is known yet
about the semantic properties of word and sentence embeddings directly extracted from the
pre-trained model. Neither is it clear what the best way is for extracting sentence embeddings
from BERT. Each of BERT’s hidden layers contains an embedding for each of the tokens in the
input sequence, as well as for the special [CLS] token, which is used as a representation of
the complete sentence when fine-tuning BERT for classification tasks. Liu et al. (2019) tested
BERT word embeddings from different layers on a set of ‘probing tasks’ and found that word
embeddings extracted from hidden layers in the middle of the model encode the most general
linguistic and semantic information. Meanwhile, informal experiments reported on a discus-
sion forum in Google’s official GitHub repository for BERT > compare different methods for
extracting sentence representations, with and without fine-tuning. These experiments suggest
that, without fine-tuning, embeddings for the [CLS] token do not perform well in a sentence-
similarity task, but that sentence representations obtained by averaging the embeddings for
each of the individual tokens in the sentence lead to better results. While such unpublished
results should be interpreted with great caution, they did help us formulate hypotheses when
experimenting with different BERT-derived representations.

We tried to make our BERT-derived vectors as information-rich as possible, by feeding our

*https://github.com/google-research/bert/issues/276 (consulted on 2019-05-07)
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paragraphs to the model ‘as-is’, without removing any information. Based on our review of the
limited available literature on BERT, we propose several possible ways of extracting paragraph
embeddings. ¢ Our first approach, BERT-Pooled-Paragraph, uses the representation of the
[CLS] token from a ‘pooling layer’ (with pre-trained parameters) that takes the final hidden
state of the model corresponding to this token as input and transforms it to a representation
used for next-sentence classification. We also tested a variation of this approach, BERT-Pooled-
Sentence, that first segments the event descriptions into sentences, then feed these to the model
separately, and then sums the pooled embeddings for each sentence in order to produce a
paragraph representation.

Our second approach does not make use of the pooling layer but instead uses hidden layer
states corresponding to individual word tokens and composes these (by averaging the values
for each dimension) to obtain a paragraph representation. We experiment with several hidden
layers: the fifth (BERT-Mean-5), the ninth (BERT-Mean-9), and the (final) twelfth layer (BERT-
Mean-12). Following the previous literature, we expect layers 5 and 9 to work best as these are
around the middle of the model, but we also include layer 12 for comparison with the pooled
representations, which are also derived from the final layer.

®In all cases, we use the pre-trained version of the 12-layer BERTgase model made available by Google (https:
//github.com/google-research/bert) and its PyTorch reimplementation available at https://github.
com/huggingface/pytorch-pretrained-BERT.
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5. Representations 11: Event name modeling

This chapter introduces the second type of event embeddings that we use in our experiments:
representations of the co-occurrence contexts of event names. In section 5.1 we briefly motivate
our general approach, and in section 5.2 we describe the methods that we used for obtaining
our representations.

5.1. Motivation

To model the co-occurrence contexts of event names, we need to construct a distributional
model in which event names are treated as single word tokens. There are two types of possible
approaches for doing this: (i) finding and tokenizing a corpus in which our event names occur,
and then training a distributional model on this corpus; or (ii) somehow making use of existing,
pre-trained models. In either case, our models should satisfy the following constraints as much
as possible:

1. Quantity: We would like to compute vectors for as many of the events in our database
as possible (to maximize the number of training samples in our experiments in Chapter
6).

2. Quality: The vectors in our model should be sufficiently detailed, i.e., based on a large
number of occurrences of the event name.

3. Interpretability: We would like the vectors to have interpretable dimensions (so that
they are usable in our experiments in chapter 7).

4. Computational cost: We prefer simpler models that are less expensive to train (or off-
the-shelve models that have already been trained).

There is a clear trade-off between some of these constraints: for example, to increase the
quality of the vector space, we could choose to include only event names with an occurrence
count above a certain threshold, but this would obviously decrease the quantity of the vec-
tors. There is also a trade-off between quality and interpretability: predictive models such as
Word2Vec (Mikolov et al. 2013) have been shown to outperform count-based models (Baroni
et al. 2014a), but are also harder to interpret. Finally, sophisticated models trained on very
large corpora might be able to produce better results, but also require more computational re-
sources and thus have a higher cost in terms of time, financial resources and environmental
impact (Strubell et al. 2019). Since there is no method that satisfies all of the constraints, we
experimented with several approaches, each prioritizing certain constraints over others.
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# with > 50 occurrences # with > 10 occurrences # in dataset

Hurricanes 50 231 1241
Concert tours 77 468 1978
Battles 419 1901 6138

Table 5.1.: Occurrences of event names in the Wikipedia corpus

5.2. Methods

We compare three different approaches: simple count-based models trained on the Wikipedia
corpus (section 5.2.1), pre-trained Word2Vec vectors for entities in Freebase (section 5.2.2), and
pre-trained vectors from the “‘WikipediazVec’ model (section 5.2.3).

5.2.1. Simple count-based vectors

Models based on word-word co-occurrence matrices are the oldest and ‘purest’ kind of distri-
butional model. While their performance on standard distributional tasks is not as good as that
of more recent, prediction-based models, their advantages are that they are relatively cheap to
train and are conceptually simple.

Our count-model was obtained using a four-step process. The first step was choosing and
obtaining a corpus that contains our event names. Since our event dataset is derived from
Wikipedia, using Wikipedia itself as a corpus seemed a logical choice. We used a dump of
the full text of Wikipedia', which has a length of over 2 billion words. An advantage of the
Wikipedia corpus is that we can be certain that our event names occur in it, at least in the
articles where they are defined but also in articles that refer to these events (e.g., we would
expect the ‘Battle of Waterloo’ to be mentioned in the article about ‘Napoleon Bonaparte’).
However, an important question is how frequently the event names appear. As shown in Table
5.1, most event names appear less than ten times. In order to make sure our representations are
of sufficient quality, we only consider events that have a frequency of at least 50. This amounts
to around 5% of the dataset across event types.

The second step was pre-processing and tokenizing the corpus in such a way that every
event name corresponds to a unique token. To do this, we first created a mapping assigning
every event to a unique ID token (e.g., Battle_of_Waterloo =- __EVENT_06585__). Next,
we identified all instances of event names in the corpus and replaced them by their respective
ID tokens. Note that this search was based on the event names as given in the URL and title of
Wikipedia articles, which are unique. Events with the same name are distinguished using year
numbers (e.g. ‘Battle of Mogadishu (1993)’ and ‘Battle of Mogadishu (2006)’ are two different
events); in such cases, we look only for the full title (including the year number) of the event.
This has as a disadvantage that all instances of ‘Battle of Mogadishu’ without a year number
have to be discarded; unfortunately, this is inevitable given that we do not have a way of decid-

'Dump date: November 20, 2018; text extracted and cleaned using Wiki Extractor (https://github.com/
attardi/wikiextractor).
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ing to which unique battles these instances correspond. After finding all event name instances
and replacing them by token IDs, we tokenized the corpus using the default word_tokenize ()
function from NLTK (Bird et al. 2009).

Next, we constructed a raw word-word co-occurrence matrix from our tokenized corpus.
This involved several sub-steps: first, we found unigram counts for each word w € V in the
corpus and filtered out non-frequent words (n < 50) to get a vocabulary of frequent words
Vieq- We also assigned a unique ID to each word in Vieq. Then, we started building a co-
occurrence matrix C' of size Vireq X Vieq in which each entry (7, 7) is the number of times that
context word j is found within a window of s words of target word i. The window size s is a
hyperparameter; we experimented with s € {2,5}.

As a last, optional step, we weighted the raw counts using Positive Pointwise Mutual In-
formation (PPMI). PPMI expresses how ‘surprising’ it is if two words x and y occur together,
given how frequently each of them occur on their own:

Pz, y)
PMI(z,y) = log P PW)
PPMI(z,y) = max(0, PPMI(z,y))

where P(x,y) is the probability of two words occurring together and P(z) is the unigram
probability of a word. Doing this has the advantage of reducing the influence of very frequent
words. For example, if the word ‘hurricane’ co-occurs very frequently with the context words
‘the” and ‘he’, this tells us nothing special about hurricans, because almost every word occurs
frequently with these context words. On the other hand, the words ‘hurricane’ and ‘damage’
co-occurring frequently is more informative because neither of these words have a very high
unigram frequency.

5.2.2. Word2Vec Freebase vectors

An interesting, ready-to-use resource for distributional representations of named entities, also
including named events, are the pre-trained 1000-dimensional Freebase vectors released by
Google as part of Word2Vec? (Mikolov et al. 2013). Freebase (Bollacker et al. 2008) is a (now dep-
recated) database containing structured knowledge about various kinds of named entities; the
Word2Vec model contains distributional representations of the names of 1.4 million of these.
These vectors have two main advantages: they are pre-trained and thus do not have any com-
putational cost to us, and they are the same vectors that were used in Gupta et al. (2015), so
using them makes it easier to compare our study with theirs. Two a-priori disadvantages,
however, are transparency (Word2Vec dimensions do not have any inherent meaning), and the
impossibility of comparing named entity vectors and other words (the vectors are released as
a separate space that exclusively contains named entity vectors). Finally, while vectors are
available for a fair number of events in our dataset, we are not sure of the quality of these as
we do not have access to the underlying corpus and cannot check how frequent each of the
entity names was in that corpus.

*See https://code.google.com/archive/p/word2vec/
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# in Freebase # in WikipediazVec # in dataset

Hurricanes 158 821 1241
Concert tours 154 999 1978
Battles 593 4493 6138

Table 5.2.: Occurrence of named events in Freebase and WikipediazVec

We constructed our Freebase space by by converting the Wikipedia URLs of all of our named
events to the Freebase identifier format and then retrieving the Freebase vectors whose iden-
tifier actually existed. The identifier conversion was straightforward and involved only lower-
casing the Wikipedia URLs and replacing the prefix /wiki/ by /en/ (e.g. /wiki/1991_
Bangladesh_Cyclone = /en/1991_bangladesh_cyclone). Table 5.2 lists the numbers of
events that were found both in Wikipedia and in Freebase. While this is true for only a small
subset of the events in Wikipedia, we have slightly more Freebase vectors than count vectors.

5.2.3. Wikipediaz2Vec vectors

As an alternative to the Freebase vectors, we also experiment with vectors from Wikpedia2Vec
(Yamada et al. 2016; Yamada et al. 2018), an extension of Word2Vec’s SkipGram algorithm that
takes into account not just word co-occurrence statistics, but also the link graph structure of
Wikipedia. This means that entities whose Wikipedia pages have similar incoming links and
whose textual contexts are similar will be close to each other in semantic space. Entities and
other words are projected into the same semantic space. This approach has two main advan-
tages over the Freebase vectors: the fact that they are based on Wikipedia means that they
should (in theory) contain representations for all of the events in our dataset, and the fact that
entities and words are projected into the same space means that they are comparable. Fur-
thermore, Yamada et al. (2016) show that a system based on their WikipediazVec embeddings
achieves state-of-the-art performance on a named entity disambiguation (NED) task, suggest-
ing that these vectors also capture referential information about entities. However, a main
drawback of these vectors is that they are not just based on corpus data but also on structured
knowledge, which might give them an unfair advantage vis-a-vis other entity representations.

Event names in Wikipedia2Vec are identical to their corresponding Wikipedia counterparts,
except that the prefix /wiki/ isreplaced by /ENTITY/ (e.g. /wiki/1991_Bangladesh_Cyclone
= /ENTITY/1991_Bangladesh_Cyclone). Table 5.2 shows the number of our named events
for wich we could retrieve vectors; while this was possible in a majority of cases, for a signifi-
cant number of events in Wikipedia we could not find a corresponding entry in Wikipedia2Vec.
We have not been able to find out why this is the case.
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6. Testing referentiality 1: Attribute prediction

In this chapter, we describe our experiments with predicting referential properties from our
two types of distributional representations of named events. In section 6.1, we describe how
we approach the prediction task and which models we use, and in section 6.2 we discuss the
results of our experiments.

6.1. Methods

6.1.1. Tasks

Our experimental setup is based on the one used in Gupta et al. (2015), but departs from it
in several ways. Gupta et al. frame the attribute prediction problem as a zero-shot learning
task: their goal is to learn a mapping from distributional space to a set of referential attributes,
that are predicted all at once. To do this, they use a logistic regression model that takes a
distributional vector as input and outputs predictions for each referential attribute. For binary
attributes, the predicted value is the probability that an entity has that attribute; for numerical
attributes the normalized value of the attribute is predicted directly.

The first difference between Gupta et al’s work and ours is that we train a separate model
for each attribute. Under Gupta et al’s approach, both the inputs and outputs are multi-
dimensional vectors. A potential theoretical advantage of this approach is that one could frame
the task as a cross-space mapping problem, in which distributional and referential information
have a similar status (i.e., both distributional and referential entities ‘live’ in a similar kind of
space). Although it is not clear whether or not Gupta et al. actually view their specific task
in this way, cross-space mappings are a popular approach elsewhere in formal distributional
semantics, for example in (Herbelot and Vecchi 2015), where a mapping is learned from distri-
butional vectors to a ‘truth-theoretic space’ whose dimensions are quantifiers (represented as
numerical values corresponding to ‘all’, ‘most’, ‘some’, and ‘none’). A more practical reason
to choose for a cross-space mapping rather than predicting attributes separately would be to
make use of correlations between different attributes.

However, we have still chosen to predict attributes separately because doing so makes our
approach more flexible and allows us to make better use of the available data. In our event
database, there is much variation between events as to how many attributes they have. For
learning a cross-space mapping, we would have to restrict our dataset to only those events
that have all of the attributes that we would like to predict, which would imply discarding a
large part of this dataset. By contrast, when learning to predict attributes separately, we can
train and test on all of the data available for each attribute. Another advantage of learning
separate models is that it allowed us to work incrementally: we could add new attributes to
our system ‘on the fly’ without having to re-train the models for the attributes we already had.
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Moreover, we expect that we can achieve good results even without being able to take ad-
vantage of correlations between attributes, given that Gupta et al. (2015) obtained good results
with a regression model that learns parameters for every output dimension separately and does
not capture relationships between the output dimensions. This means that, in practice, their
approach is equivalent to learning separate models but with the same hyperparameters. We
approximate this property by tuning on only one of the attributes and using the same hyper-
parameters for all of the attributes.

A second difference is that we use classification rather than regression. This has several
advantages: first of all, it allows us to evaluate predictions for numerical and categorical at-
tributes in the same way, using standard measures for classification tasks such as accuracy and
F1 scores (Gupta et al. 2015 use accuracy for binary attributes and a rank-based score for nu-
merical attributes). Moreover, some of our attributes, such as hurricane category and affected
areas are modeled more naturally using classification than regression; while it is possible to
approximate these using binary attributes (e.g., is_category 1, is_category 2, ...), interpreting
would be more difficult. Finally, from preliminary regression experiments on our dataset, we
expect that trying to predict exact values for numerical attributes is too difficult a task, even
when evaluated in a rank-based way as in Gupta et al. (2015). Based on this expectation, we
decided to set a somewhat lower bar for our model and classify numerical attributes into broad
categories rather than predict precise values.

We considered several strategies for defining classes for numerical attributes. An earlier
idea was to find the range of the values found in the dataset (e.g. 2000 BCE to 2000 CE for
year attributes) and divide this range into a given number of equal-sized ‘windows’ (e.g. 2000
BCE to 1000 BCE, 1000 BCE to o, etc.). However, this approach is very sensitive to outliers,
and yields very unbalanced class distributions (e.g. almost all events are in a single class, and
the other classes only contain a few events each). Instead, we opted for an approach that relies
on the distribution of event values in the dataset and sets thresholds based on percentiles (e.g.,
the soth percentile, or the median, is the value below which 50% of the data points lie). The
percentile thresholds for each of the numerical attributes are given in Table 6.1.

In order to test how the level of detail of the classes affects prediction accuracy, we define
two classification problems for every attribute (except for categorical attributes that are binary
by definition): a binary problem and a multi-class problem. For numerical attributes, the binary
problem is defined as classifying events as either below the median, or above it, while for the
multi-class problem, the boundaries are set at the 25th, 50th, and 75th percentiles. By definition,
classes defined in this way will have the same size (implying that a majority-class or similar
baseline algorithm would be expected to achieve 25% or 50% accuracy, respectively), although
class sizes can vary a bit if there are many events with values exactly at one of the thresholds.
For categorical attributes, we tried to find ‘natural’ boundaries: for area attributes we divide
the world into hemispheres (east and west, or north and south) for binary classification, or
into quadrants ( north-east, south-east, south-west, north-west) for multi-class classification;
for hurricane categories we used the full Saffir-Simpson scale (plus two categories for tropi-
cal storms and tropical depressions) for multi-class classification and the distinction between
hurricanes and sub-hurricane storms for binary classification. The other three categorical at-
tributes (involves_France, involves_US, involves_Spain), are binary by definition.

44



Percentiles

25% 50% 75%
Hurricanes
Da (damage, $) 2,960,000.00  45,000,000.00  350,000,000.00
Du (duration, days) 5.00 8.00 12.00
Fa (fatalities, #) 1.00 7.50 40.00
Pr (air pressure, mbar) | 935.00 960.00 986.00
Wi (wind speed, km/h) | 117.50 175.00 230.00
Ye (year) 1985.75 2002.00 2010.00
Concert tours
Du (duration, days) 79.00 205.00 368.00
Le (legs, #) 1.00 3.00 5.00
Ye (year) 1996.00 2007.00 2013.00
Battles
Be (belligerents, #) 2.00 3.00 4.00
StR (strength ratio) 0.30 0.52 0.75
StT (strength total, #) 5505.00 19921.00 50103.50
Ye (year) 1520.00 1796.00 1901.00

Table 6.1.: Percentile-based class thresholds for numerical attributes. The 5oth percentile (=me-
dian) is used for binary classification, and the 25th, 5oth, and 75th percentiles are
used for multi-class classification.

6.1.2. Models

Earlier work predicting referential properties from distributional representations (e.g. Gupta
et al. 2015; Herbelot and Vecchi 2015) obtained good results with simple regression models (lo-
gistic regression, partial least squares regression), suggesting that simple (linear) classification
models might also be sufficient for our task. We try two different models: SVM, a Support
Vector Machine classifier, and MLP, a feedforward neural network model with a single hidden
layer. SVM classifiers compute a hyperplane that separates instances of two classes; we used
the SVC implementation from the Scikit-learn Python package Pedregosa et al. 2011, with a lin-
ear kernel' and using the one-against-one approach for multi-class classification. MLP learns
weight matrices such that it optimizes a cross-entropy loss function using gradient descent.
We implemented our model using PyTorch (Paszke et al. 2017). We use an Adam optimizer
Kingma and Ba (2014), and implemented ‘early stopping’: we train the model for 200 epochs,
or until the loss on the validation set does not improve over a window of 10 epochs. We also
experiment with applying ‘dropout’ (Srivastava et al. 2014) on both the input layer and the hid-
den layer in order to reduce overfitting. We tested both models against a ‘stratified’ baseline
algorithm that makes random predictions consistent with the class distribution of the training
set (e.g. if 40% of the training samples are in class X, 40% of the test samples will be assigned
to class X).

'"We also experimented with an RBF kernel, but this did not produce good results.
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Hurricanes Concerts Battles
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based on average score across runs
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Calculate val set accuracy

Figure 6.1.: Tuning pipeline (only applied to hurricane/year attribute)

For both models, we implemented a grid search to find the best hyperparameter settings. For
SVM, we only tuned the C parameter, which influences the width of the margin of the hyper-
plane that is learned. For MLP, we tuned the initial learning rate, L2 penalty (regularization),
dropout rate (on the input layer and on any hidden layers), batch size, and hidden layer size
for MLP. Given the large number of experimental setups (37 attribute classification tasks x 2
models x 6 embedding types = 444 experiments for the experiments with description embed-
dings alone), doing a full hyperparameter grid-search for each setup was not feasible. For this
reason, and to test the robustness of our models, we only tuned on the models for one attribute
and used the best settings for the other attributes.

6.1.3. Tuning and training pipelines

The pipeline for tuning our models is summarized in Figure 6.1. Tuning is done on each of the
setups for the ‘year’ attribute of the hurricane dataset (there is one setup for every combination
of model type, embedding type, and binary/multi-class; e.g., we tune SVM/Summed/Binary,
MLP/BERT-Mean-5/Multi-class, etc. separately). While our choice for the ‘year’ attribute is
largely arbitrary, we preferred it over other attributes because it is present in all three event
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Figure 6.2.: Training and evaluation pipeline (applied to all attributes)

datasets, has a large number of training samples, and because we see it as a ‘core’ attribute
of events in general. Our pipeline is somewhat complicated as it involves applying cross-
validation and repeating the training procedure several times. We use 10-fold cross-validation
because our dataset is relatively small, and we would like to maximize the amount of data
available for use in both training and testing. On the other hand, we added repetitions to
the dataset because initial experiments with our MLP model suggested that, while generally
performing well, its performance varied a lot (in part depending on hyperparameter settings).
Repeating the training procedure makes it possible to quantify our models’ stability and to get
a more robust estimate of the model’s performance.

For doing cross-validation, we created ten different (randomized) partitions of the dataset
(‘folds’), each of which consisted of 60% training items, 20% validation items, and 20% test items.
For each fold, we ran each of the hyperparameter setups in our search grid, and calculated
accuracy scores on the validation set. We then repeated the cross-validation procedure ten
times. Doing this yielded an accuracy score matrix with 100 validation scores (10 folds x 10
repetitions) for every hyperparameter setup; we selected the setup with the highest average
validation score as the ‘winner’.

Next, having found optimal hyperparameter settings for the ‘year’ attribute, we can train
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Figure 6.3.: Accuracy scores for strong (easy-to-predict) and weak (hard-to-predict) attributes

all of our models using these settings. Our training pipeline is schematized in Figure 6.2, and
is performed for each of our experiments. Again, we use 10-fold cross-validation (with the
same split as before); the validation sets are used only for calculating validation loss for the
MLP early stopping algorithm. Evaluation was done by combining the test sets from each of
the folds and calculating accuracy and F1 scores. As before, we repeated the cross-validation
process 10 times and average the scores over predictions to produce final results.

It should be noted that, while cross-validation is used both for tuning and training, it is
applied in both cases on the full dataset. Since tuning is performed for one attribute only, in
the majority of cases there is not overlap in tuning and testing data. However, for the ‘year’
attribute in the hurricane dataset, test results are obtained on data that is already seen during
tuning, which means that the results for this attribute should be interpreted with some caution.

6.2. Results

In this section, we report and discuss the results of our attribute prediction experiments. We
first look at the results of our description representation experiments (section 6.2.1, before
moving on to event name modeling (section 6.2.2).

6.2.1. Description representations

We first look at how well each attribute is predicted, and how accuracy varies across models
and embedding types. Next, we provide a brief qualitative analysis of the mistakes that our
models make and evaluate the influence of hyperparameter choices and of random factors.

Prediction accuracy

We evaluate every combination of attribute, model and embedding type with accuracy scores
and macro-averaged F1 scores.” Tables A.1 and A.2 in the appendix give our full set of results.
For the sake of simplicity, in the discussion in this paragraph we focus mainly on the results for
our ‘simplest model’ (summed GloVe embeddings [Gs], with an SVM for predicting attributes)
and our ‘best model’ (the best-performing BERT embeddings [Bms], with an MLP classifier).

*We calculate macro-averaged F1 scores by first computing F1 scores for individual classes and then averaging
these.
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Figure 6.4.: Accuracy scores for year attributes (multi-class), split by event type

We achieved above-baseline performance for all attributes. However, as shown in Figure
6.3, there are large differences between how well every attribute is predicted. Near-perfect
accuracy is achieved for area attributes (ArNS, ArWE, Ar; for hurricanes and battles), and for
the ‘year’ attribute and the ‘country involved’ attributes (InF, InS, InUS) for battles. While, due
to the unbalanced distribution of these attributes, baseline performance on these attributes
is also high, our models still outperform the baseline by a wide margin. On the other hand,
numerical attributes have an equal class distribution; the best accuracy scores for most of them
lie between 0.69-0.91 (binary) or 0.43-0.71 (multi-class). A negative outlier is ‘Strength_Ratio’
(i.e. the difference is army sizes between the two sides in the conflict), which is predicted with
only slightly above-baseline accuracy by most models.

Comparing the predictability of the different event types is difficult because every event
type has different attributes. The only attribute that all event types have in common is ‘Year’
(see Figure 6.4). For both hurricanes and concert tours, the best models achieve a score of
up to around 0.85, but for battles we get up to 0.96. A possible explanation for this might be
the higher number of training samples. Also, unlike for most other attributes, for the ‘year’
attribute there is a large difference in performance between the ‘simple’ and the ‘best’ models.
This difference is likely due to the fact that for creating GloVe-Summed vectors, we exclude
numerical tokens (and hence, year numbers) to make the representation as ‘poor’ as possible.
For BERT representations we did not do this; hence, we hypothesize that the BERT model was
able to use its representation of year numbers to improve its guess of when an event happened.
Interestingly, the difference between GloVe-Summed and BERT is smaller for battles than for
the other event types.

Moreover, hurricanes and concert tours both have a ‘Duration’ attribute; prediction on hur-
ricanes works slightly better (up to 0.74 vs. up to 0.69). Also, hurricanes and battles both have
area attributes; interestingly, performance is better (up to 0.98 vs. up to 0.93 for the multi-class
problem) for hurricanes even though there is much less training data available. Note that what
‘area’ means has a slightly different interpretation for both event types: for battles, we usually
have GPS coordinates for the specific location where the event took place, while for hurricanes
we rely on the list of countries and regions that were affected, found the coordinates given on
the Wikipedia page for that country or region, and inferred the hemisphere from those coor-
dinates. However, given the coarseness of our predictions (on the hemisphere/quadrant level),
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Figure 6.5.: Comparison of event description embeddings; averaged scores across attributes

it is unclear whether this could have an influence on prediction accuracy.

There is some variation between which model performs best for which problem, but overall,
the SVM and MLP model work about equally well. On the GloVe-Summed embeddings, SVM
and MLP have accuracy scores of 0.689 and 0.694, respectively, averaged across all attributes.
This difference is statistically significant (a two-tailed paired T-test gives T = —3.35 with
p = 0.002 < 0.05) but negligible. More interesting is the variation in performance between
different representations. As shown in Figure 6.5, the BERT-Mean representations work best,
but GloVe-Summed comes very close. For the SVM model, GloVe-Summed has an average score
of 0.69, whereas Bert-Mean-5 has an average score of 0.71. Again, this difference is significant
but negligible (I" = —2.8, p = 0.008 < 0.05). Comparing the different BERT embeddings,
we find that combining representations for individual word tokens (BERT-Mean) works much
better than using pooled representations (from the CLS token) for the entire paragraph (Bert-
Pooled-Paragraph) or combining pooled representations for individual sentences (Bert-Pooled-
Sentence). Furthermore, zooming in on BERT-Mean, we do not find large differences between
the three layers.

Confusion analysis

We performed a confusion analysis to see what kinds of mistakes our models make. Figure 6.6
shows confusion diagrams for the subset of multi-class problems that we think is most rele-
vant to discuss. First, we consider the ‘Area’ attribute, because it exists for both hurricanes and
battles and because it has high accuracy scores for both event types. Hurricane area predic-
tions are (almost) perfect for the two largest classes, North-East (Europe and most of Asia) and
North-West (mostly North-America). The smaller South-East category is also predicted well,
but South-West seems to have too little training data to make meaningful predictions (however,
for most hurricanes the model still correctly predicts that they occurred in the southern hemi-
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Figure 6.6.: Confusion matrices for a subset of multi-class event description classification prob-
lems (model: SVM, embedding: GloVe-Summed)

sphere). Battle area has a slightly lower prediction area; here, we find some confusion even in
the two largest classes (again, these are North-West and North-East), for example, about 15%
of battles in the North-West get classified as having occurred in the North-East.

Next, we look at hurricane category, which is interesting because it is ordinal, and because
it has more categories than other attributes, and also at the numerical attributes ‘year’ (for
battles and hurricanes) and ‘strength ratio’ (for battles). ‘Year’ predictions are excellent for
battles, but less so for concerts; ‘strength ratio’ is not well predicted at all (only slightly above
the baseline accuracy of 25%). In all cases, we hoped to find that most mistakes are between the
correct class and adjacent classes. We indeed see this pattern for the ‘Year’ attributes, and in
part for hurricane category. However, for some less-well predicted hurricane category classes,
mistakes are more evenly distributed, and this is also the case for battle strength ratio. Another
interesting phenomenon is that hurricane categories 1 (‘tropical storm’) and 5 (‘category-4
hurricane’) ‘attract’ a large share of the predictions; this could in part be explained by the
relatively high frequencies of these classes.
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Model Average presence in 25% best setups

BS 50 500 full LR o0.001 o0.005 o0.01
MLP 0.03 0.39 0.58 0.46  0.33 0.21
DO o 0.1 0.5 HS 50 150

MLP 0.40 0.39 0.21 0.48 0.52

C 0.001 0.01 0.1 1 10 100

SVM 0.14 0.21 0.50 0.07 0.07 0.09

Table 6.2.: Hyperparameter results (BS=batch size, LR=initial learning rate, DO=dropout rate,
HS=hidden layer size)

Hyperparameters and stability

Hyperparameter settings were analyzed by going back to the score matrix (which compares
the accuracy of our setups across cross-validation folds and repetitions; see Figure 6.1) and
finding the 25% best-performing settings for each of our tuning setups (i.e., combinations of
attribute, binary/multiple, model and embedding options). Then, we calculated, for every hy-
perparameter value, in what proportion of best setups (on average) it is present. As shown
in Table 6.2, there is quite a lot of variation between tuning setups, but there are some clear
patterns: such as that full batch gradient descent works best and that dropout does not help
much. We also evaluated the stability of the models by testing how much variation in accuracy
there is between repetitions; SVM is the most stable model of the two: its accuracy varies with
a standard deviation between o = 0.001 and o = 0.02 (depending on the experiment), while
for MLP we find 0.001 < o < 0.03.

6.2.2. Event name representations

In this subsection, we discuss the performance of our three types of event name representa-
tions: count-based vectors, Freebase vectors and WikipediazVec vectors. The full results of
our experiments are given in the appendix (Tables A.3 through A.5). Because these vectors are
available for different subsets of our event dataset, we cannot compare their results directly
against each other. However, we will compare each of these methods against results for de-
scription embeddings: for each of the three event name representation types, we also trained
and tested our models on description embeddings (GloVe-Summed) for the subset of events
for which the name representations were available. The overall patterns of performance of
event name representations are very similar to those of description embeddings; here, we only
discuss those of our findings that are specific to event names.

Figure 6.7 shows that the best count-based representations are PPMI-weighted vectors with
window size 5, which (with an average score of 0.70) outperforms both the other count-based
embeddings and the GloVe-Summed description embeddings (which get an average score of
0.66; a two-tailed paired T-test shows that this difference is significant with 7" = 3.7 and
p = 0.0008). Interestingly, PPMI-weighting increases performance for window size 5, but
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Figure 6.8.: Freebase and WikipediazVec vs. description vectors; averaged scores across
attributes
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not for window size 2. Note that these results are only from SVM models, which work better
for sparse, high-dimensional representations than MLPs. Meanwhile, in Figure 6.8, we see
that both Freebase vectors and WikipediazVec vectors also perform slighly better than GloVe-
Summed vectors.

While, overall, all types of event embeddings perform well above baseline, the margin with
which they do can vary: description embeddings and WikipediazVec, on average, perform be-
tween 20-28 percentage points above baseline, while this is only between 8-17% for count em-
beddings. Freebase vectors are in the mid range and add around 22% to baseline performance.
Moreover, event name vectors, unlike description vectors, do not beat the baseline for all at-
tributes. This is especially true for count vectors; while the best embedding type, PPMI5, beats
baseline accuracy on all attributes, other representations perform at or below baseline level for
1-3 out of 33 attributes; interestingly, these are not the same attributes for every representation
type. When we also look at F1 scores, the picture becomes more pessimistic: PPMI5 represen-
tations have an F1 score below the baseline for almost half of attributes (15/33). Strangely, raw
count representations, which have lower accuracy scores than PPMI representations, do better:
Raw2 scores below baseline in only 6 cases. Meanwhile, Freebase vectors perform better, and
get a below-baseline F1 score for only 3/37 attributes; WikipediazVec never performs below
baseline.

We suspect that the lag in performance of count vectors is due more to the limited availability
of training data than to an inherent weakness of the representations, for several reasons. First
of all, models trained on GloVe-Summed representations for the same set of events as the count
vectors have the same performance issues (with a sub-baseline F1 score in 10/33 cases). Second,
the fact that different count-based models have problems with different attributes suggests that
these problems are more or less random and not due to an inherent inability for count models
to capture certain kinds of referential information. Finally, Freebase vectors capture the same
kind of distributional information as count vectors but achieve better performance (with more
training data), which again points in the same direction.
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7. Testing referentiality 11: Analyzing the event space

In chapter 6, we found that we can successfully predict many different referential attributes
from the events in our datasets. However, what we do not know yet is how our models do this:
what kind of distributional cues are helpful for inferring referential information? And how is
the resulting event space structured?

7.1. Motivation and approach

A challenge in distributional semantics is that word representations are not transparent: the
position of a word in semantic space relative to other words tells us something about its mean-
ing, but it is usually unclear exactly how each dimension contributes to the overall meaning of
the word. This is especially the case for vectors learned using techniques like Word2Vec and
GloVe, where the dimensions of the space do not have any inherent (interpretable) meaning.
In count-based models (without dimensionality reduction), individual dimensions have a clear
interpretation (i.e., co-occurrence counts with particular context words), it is not clear how
meaning emerges from the combination of these dimensions. For our purposes, we are not
just interested in how distributional representations encode the meanings of words in general,
but more particularly in how named event representations are represented and how this might
reflect there referential properties.

Here, we propose a method of analyzing event spaces based on Principal Components Anal-
ysis (PCA), which is a technique for transforming a space (S) whose dimensions are possibly
correlated into another space (S’) whose dimensions (called ‘principal components’) are not
correlated. The dimensions of S’ are ordered by how much of the variance in the original data
they explain. In many cases, the first few dimensions can account for a large portion of the
variance. Because of this, PCA is popular as a method for dimensionality reduction: by keep-
ing only the first few dimensions of S’, most of the information in S can be represented but in
a form that is much more compact and easier to process computationally.

Here, we are not interested in dimensionality reduction but in combining information from
different dimensions into a single dimensions. For example, suppose that there are a number
of events in one of our event spaces that have a certain referential property in common, such
as that they all took place in the same region). If this referential property is reflected in the
distributional representation, we might expect that these events have similar values in one or
several dimensions. However, such patterns are difficult to find since these dimensions also
encode many other properties besides spatial location. By ‘un-correlating’ the dimensions in
the event space, we hope to get single dimensions that encode only spatial location (or other
referentially relevant features).

Our procedure is as follows: we take the space of all GloVe-Summed representations G for
a certain event type (e.g. hurricanes) and then fit a PCA algorithm on this space, so that we get

55



a transformed space G’,." Next, we take the space G, of GloVe vectors for all of the individual
words that occur at least once in the event descriptions from which G was derived, and then
project these vectors into G’,. Then, for every dimension in G, we sort the words in G, by
their value on that dimension. Our hypothesis is that, if a certain word has a high absolute
value on a given dimension, that dimension is important for distinguishing that word from
other words. By inspecting which words from the hurricane descriptions are ‘activated’ by
particular dimensions, we hope to find out something about what that dimension encodes. For
example, suppose that in the G’ space for hurricanes, there is a dimension that encodes wind
speed, we might expect wind-related words to have a high absolute value on this dimension.
This idea is (in part) inspired by earlier work on embedding space interpretation such as Shin
et al. (2018).

7.2. Results

In Table 7.1, for each of the first five PCA dimensions, we give the words with the ten lowest
activations (the ‘blue zone’ of the table, indices o - 9) and the words with the ten highest activa-
tions (the ‘red zone’, indices -10 to -1). For some dimensions we indeed find very clear patterns:
in those dimensions, the words with the lowest activations and/or with the highest activations
belong to a certain semantic category. Interestingly, the patterns that we find on the ‘positive
side’ and the ‘negative side’ of the dimension are often not related to each other. Table 7.2 gives
our interpretation of these patterns: for each dimension, we give the most common semantic
category of the words that are activated by that dimension, along with how many words in the
top-10 belong to that category. Of course, grouping words into categories is always somewhat
arbitrary, and our interpretation is fundamentally subjective; however, we believe that some
of the categories that we found are so clear that they should be uncontroversial.

For hurricanes, we find at least two geography-related dimensions: all of the (top-10) pos-
itively activated words in PCA dimension 4 are related to Asia (‘asia’, ‘malaysia’, ‘korean’,
‘japan’), whereas most of the postively activated words in PCA dimension 1 are related to U.S.
geography (‘louisiana’, ‘texas’, ‘boston’, but also ‘county’). Furthermore, there is a ‘change’
dimension (dimension 3, negative activations) that contains verbs, adverbs and adjectives de-
scribing how hurricanes can change (‘deepened’, ‘emerged’, ‘increasingly’, ‘rapidly’). Finally,
there is a dimension with damage-related words (dimension 3, negative: ‘damage’, ‘erosion’,
‘catastrophic’) and a dimension with finance-related words and symbols (dimension 2, positive:
‘crore’, ‘$’, ‘php’, ‘rs’ are currency symbols, and ‘%’ and ‘amount’ are also finance-related).

Concerts also have geography-related dimensions: in dimension 1 all negatively activated
words are countries and continents, and in dimension 2 most positively activated words are
related to the north-western Europe (‘iceland’, ‘scotland’, ‘scandinavia’, ‘celtic’). There are
also two dimensions (dimension 1, positive activations; dimension 4, negative activations) that
activate only music-related terms (e.g. ‘bassist’, ‘sound’ in dimension 1; ‘singer-songwriter’,

'"We use the implementation from Scikit-Learn (Pedregosa et al. 2011) (documented athttps://scikit-learn.
org/stable/modules/generated/sklearn.decomposition.PCA.html), which in turn uses the LAPACK
implementation which performs Singular Value Decomposition (SVD) on the full dataset (rather than using a
randomized approximation)
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Dim | Var | Activated words (-) Activated words (+)
o 0.70 | francelia, bogale, gaivota, kuring, sen- | first, water, [,], new, would, around,’s,
dang, koryn, kulap, nomoi, o7f, gorio [.], one, time
1 0.03 | temperature, inhg, convective, km/h, | louisiana, texas, boston, county, orleans,
humidity, gusting, precipitation, south- | florida, st., killed, $, million
westerly, extratropical, barometric
2 0.03 | atlantic, northward, southward, shores, | error, use, crore, %, $, total, php, amount,
seaboard, westward, eastward, landfall, | rs, per
coast, caribbean
% 3 0.02 | deepened, emfzrged, 'intensi]‘lfzd, wors- | hpa, gusting, mb, ),(, ft, mbar, km, mph,
S ened, deepen,increasingly, widespread, | km/h
g evolved, plagued, rapidly
an 4 0.02 | damage, moisture, erosion, damages, | asia, malaysia, korean, japan, shang-
catastrophic, excessive, residual, caused, | hai, philippines, kong, korea, taiwan,
minimal, adverse hong
o 0.76 | 2017-2018, bla, complices, 279.2, fu.c.k, | last, n’t, [.], [.], year, time, first, new,
blankensee, ahoi, 237.8, samppa, al- | one, s
bums
. . . bassist, sounds, chord, song, band, sound,
1 0.03 | netherlands, emirates, spain, oceania, . .
. . drummer, guitarist, songs, guitar
switzerland, asia, france, portugal,
colombia, uruguay
2 0.01 | consumption, increasing, continent, | drummer, february, march, guitarist,
worldwide, technological, china, asia, | october, april, august, july, june, bassist
@ significantly, profitable, achieving
§ 3 o001 | I,[$ ) ( x # +, blige, citation iceland, scotland, rock, europe, scandi-
‘5 navia, celtic, england, toured, thrash,
= band
8 4 0.01 | singer-songwriter, music, singer/song- | accident, ended, avoid, died, months, in-
writer, composer, artists, songwriter, or- Jjured, injury, prevent, passed, knee
chestra, album, ensemble, orchestral
o 0.68 | zizhi, tongjian, na, ramnicu, tin, xasan, | new, people, [.], two, time, [,], would,
jia, zhi, michel-ange, maserfield first, one’s
1 0.02 | de, william, la, st, thomas, charles, saint, | airstrikes, sunnis, insurgency, al-qaeda,
henry, del, st. qaeda, islamist, iraqi, insurgents,
hamas, taliban
2 0.02 | marine, harbor, creek, patrol, aircraft, | ptolemy, heraclius, claudius, habsburg,
maine, pacific, aviation, carolina, aerial | emperors, charlemagne, visigoths, con-
stantinople, antiochus, emperor
2|3 001 | L) LGt/ ) size, domain maj., army, battalion, colonel, lieu-
Tjg tenant, troops, regiment, infantry, con-
M federate, cavalry
4 0.01 | france, adriatic, mediterranean, spain, | sen., hawkins, elijah, malcolm, john,
croatia, czech, portuguese, german, | smith, lord, peyton, county, sheriff
italy, baltic

Table 7.1.: Words with highest and lowest activations for PCA dimensions (summed GloVe vec-
tors). The ‘Var’ column gives the ratio of the variability in the data that is explained
by each PCA dimension.



Dim Var | Dominant category (-) Dominance (-) Dominant category (+) Dominance (+)
w | 0 0.70 | hurricane names 6/10 interpunction, particles 3/10
% 1 0.03 | weather terms 7/10 geography (US) 6/10
22 0.03 | geography/directions 10/10 currency/money-related 7/10
5|3 0.02 | change-related 8/10 units, interpunction 9/10
2 4 0.02 | damage-related 10/10 geography (Asia) 10/10
210 0.76 | numbers 2/10 interpunction, particles 4/10
§ 1 0.03 | countries/continents 10/10 music-related 10/10
R 0.01 | economy-related 6/10 months 7/10
% 3 0.01 | interpunction 8/10 geography (North-West Europe)  6/10
O |4 0.01 | music-related 10/10 ‘misfortune’-related 8/10

0 0.68 | foreign words 9/10 interpunction, particles 3/10
g |1 0.02 | (saint) names 10/10 conflicts in the Middle East 10/10
T:lg 2 0.02 | navy/air force-related 8/10 king/emporer-related 8/10
M3 0.01 | interpunction 8/10 army-related 9/10

4 0.01 | geography (Europe) 10/10 names/titles 9/10

Table 7.2.: Interpretation of word categories in Table 7.1

‘orchestra’ in dimension 4). Another interesting dimension is what we call the ‘bad luck’ di-
mension (dimension 4, positive activations) which contains words like ‘accident’, ‘died’, and
‘injured’. While these words do not seem directly related to concert tours, a manual inspection
of the concert event descriptions makes clear where they come from: many concert tours are
somehow related to some life event of one of the band members. For example, in the entry for
the “Unity Tour’ by The Jacksons?, we find “The tour also marked the first time the brothers
have toured as the Jacksons without brother Michael, who died in June 2009”.

Finally, for battles we find a dimension for European geography (dimension 4, negative acti-
vations), and also two military-related dimensions. The words in the first of these (dimension
2, negative activations) seem to be more related to air forces and navies (‘marine’, ‘harbor’, ‘air-
craft’) whereas the words in dimension 4 (positive activations) seem to be more army-related
(‘army’, ‘battalion’, ‘infantry’, ‘cavalry’). There is also a dimension that seems related to recent
(religious) conflicts in the Middle East (dimension 1, positive activations), activating words
such as ‘airstrikes’, ‘al-qaeda’, ‘iraqi’, and ‘taliban’. Finally, an interesting pattern is that many
positively activated words in dimension 2 refer to rulers and emperors from different periods in
history: ‘ptolemy’ (Ptolemaic Egypt, from the 4th century BCE), ‘claudius’ (Roman emperor),
‘charlemagne’ (early middle ages). Other words in the same dimension also seem vaguely re-
lated to this theme, e.g. ‘visigoths’, ‘constantinople’.

An interesting general pattern is that the first PCA dimension of every event space explains a
very large portion of the variation in that space, but does not yield very clear semantic patterns.
For example, for all three event types, the tokens that are positively activated by the first di-
mension contain interpunction (comma, period), particle words (’s’, ‘n’t’) and the words ‘new’,
‘first’, and ‘time’. The groups of negatively activated words in these dimensions are somewhat
more coherent, but do not form a clear semantic group: for battles, the only thing that the

*https://en.wikipedia.org/wiki/Unity_Tour
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words have in common is that they are from foreign languages (Chinese, Russian [?], Roma-
nian, French); for concert tours, there seems to be no pattern at all. For hurricanes, we find
a more interpretable pattern: most of the negatively activated words for the first dimension
are names or alternative names? of hurricanes (typhoons) in the Pacific ocean. Although our
analysis is admittedly very informal and somewhat speculative, these observations seem in
line with the finding by Bullinaria and Levy (2012) that the first 100 principal components in
a dimensionality-reduced count-based space “tend to be contaminated by aspects other than
lexical semantics” (p. 898). In our case (if our analysis is correct), only the first component
is ‘bad’, but this could be explained by the fact that our summed GloVe space only had 300
dimensions to begin with.

As an extra experiment, we also looked at the activations of event vectors themselves in
the G, space. While this did not always yield clear results, we did find a few interesting pat-
terns. For example, the hurricanes that have high activations for the ‘Asia-dimension’ are all
typhoons (and hence happened in Asia), and the hurricanes with high activations on the ‘U.S.
dimension’ all happened in America. However, it is unclear what exactly the relationship is be-
tween description words that have very high or very low activations on a particular dimension
and the event vectors with extreme scores on that dimension. For example, while for battles
there is a clear ‘conflicts in the Middle East’ dimension, most battles with high values for that
dimension do not seem to be related to this. A list of events activated by each dimension is
given in the appendix (Table A.6).

SHurricanes sometimes have different names in different countries, yielding descriptions such as ‘Hurricane X,
also known in country Yas Z ...
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8. Conclusion

This thesis investigated the referential properties of distributional representations of named
events. Our work has three main contributions: (i) we proposed methods of creating distribu-
tional representations for named events; (ii) we tested what referential information these rep-
resentations encode; and (iii) we proposed a method for qualitatively analyzing event spaces.
Additionally, we designed a theoretical framework for interpreting our findings. In this chap-
ter, we will synthesize our findings and suggest directions for future research.

8.1. Synthesis

Our theoretical framework (see the schema in Figure 2.1 on p. 19) consists of three components:
LANGUAGE (the way that we talk about the world), MEANING (our mental representation of the
world), and WorLD (the physical world as we perceive it). In our experiments, we use two types
of data: information from Wikipedia infoboxes, which we see as an approximation of WoRLD,
and textual data (i.e., all of Wikipedia, and in particularly event descriptions), which we see as
an approximation of LANGUAGE. Moreover, we take MEANING to be an abstract representation
of WoRrLD which consists of event entities that are connected to semantic roles through frames.

The theoretical question that this thesis has focused on is how language use (LANGUAGE)
about named events reflects our conceptualization of the world of these events (MEANING),
and, indirectly, what the events are like in the actual world. We have approached this question
computationally using two steps. First, we created distributional representations for events,
which can be thought of as a numerical version of LANGUAGE. Next, we investigated the link
between LANGUAGE and MEANING by trying to predict referential attributes from these distri-
butional representations.

We described the first step of our computational work in Chapters 4 and 5. In Chapter 4, we
modeled language use about named events by creating distributional representations of ency-
clopedic descriptions of these events. We used two methods for doing this: taking pre-trained
GloVe-embeddings (Pennington et al. 2014) for the content words in the event descriptions
and then summing these to create a composed representation, and extracting sentence embed-
dings from BERT (Devlin et al. 2018), a recent neural language model. Because of the newness
of BERT, there is no canonical way yet of extracting sentence representations from the pre-
trained model; the approach that would turn out to be most fruitful was using hidden layer
activations corresponding to individual word tokens and combining these by averaging them.

In Chapter 5, we modeled language use about named events using a different approach: we
produced representations of the co-occurrence contexts of the names of the events. We did
this in two different ways. First, we computed count-based representations of event names
in the Wikipedia corpus. Second, we retrieved vectors for named events from pre-trained
distributional models. These models were (i) a Word2Vec (skipgram) model (Mikolov et al. 2013)
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with representations of named entities in the Freebase database, and (ii) the WikipediazVec
model (Yamada et al. 2018), which provides representations of many named entities that have
a Wikipedia page. Wikipedia2Vec embeddings are based not only on how the entity names are
used in a text corpus, but also on additional information from the graph structure of Wikipedia;
despite being not purely distributional, we included them in our study to see if they would
perform better than the other two approaches.

The second step of our work was described in Chapter 6. This chapter defined classification
problems based on the referential attributes (which we interpret as describing the MEANING
component of these events) that we extracted for the named events in our dataset. For each of
our classification problems, we trained machine learning models (a linear SVM and a simple
feedforward neural network) and evaluated their performance using a cross-validation setup.
Our results were very positive: our models outperformed a simple baseline model (which makes
random predictions based on the distribution of classes in the training data) for all attributes.
However, performance varied across attributes and representation types. In general, our results
for description representations were better than those for event name representations, but this
is probably due to the limited size of the event name datasets.

In Chapter 7, we took a first step towards explaining how our prediction models work by
performing a qualitative analysis of the space of (GloVe-Summed) event description represen-
tations. We did this by applying PCA (Principal Component Analysis), and analyzing which
words are ‘activated’ by (i.e., have high absolute values for) the dimensions in the transformed
space. Even though our analysis was limited to only the first five principal components, we
found many semantically coherent activation patterns; for example, there are PCA dimensions
that seem to encode geographical information (e.g., the ‘Asia’ dimension for hurricanes) or
information about event participants (e.g., the ‘emperor’ dimension for battles). While much
remains unclear about how the event space ‘works’, our analysis shows that at least certain
types of referential information are implicitly encoded in the space.

8.2. Future work

We see several directions for future extensions of our research, particularly related to (i) pre-
dicting semantic information from distributional representations and (ii) analyzing event spaces.
In this section, we will briefly discuss both of these directions.

First, instead of predicting different sets of referential properties for each of the event types
in our dataset, it would be interesting to make predictions for an event space containing dif-
ferent types of events. For example, one could try to predict temporal attributes (e.g. ‘year’,
‘duration’), to test whether time is encoded in the same way for different event types. Other
possibilities would be learning to discriminate between events and other entities (e.g., ‘Ttaly’,
‘Barack Obama’) and concepts (e.g. ‘country’, ‘president’), or predicting event kinds from event
instances (i.e., learning to relate ‘Battle of Waterloo’ to ‘battle’). For the latter idea, an interest-
ing type of events to consider could be recurring events, such as sport events (e.g. the “Tokyo
Olympic Summer Games’ as an instance of ‘Olympic Games’), festivals, and elections.

We also see additional possibilities for analyzing event spaces. Our analysis so far (in Chap-
ter 7) only applies to GloVe-Summed description representations, but similar analyses could be
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done for other kinds of spaces. We already performed preliminary experiments with count-
based spaces, but an analysis of the first few principal components did not yield interpretable
results. A possible alternative way of finding (PCA) dimensions that encode referentially-
relevant information would be to test which dimensions contribute to classifying referential
attributes.” Another direction would be to make use of the fact that the dimensions of count-
based space are interpretable (i.e., they encode co-occurrence counts with a particular context
word), and investigate which context words are relevant for predicting referential properties.
A possible method of doing this would be using SVM coefficient weights (cf. Chang and Lin
2008). It would be especially interesting to investigate how much attribute prediction relies on
‘superficial’ contextual cues (e.g., year numbers for time attributes or country names for place
attributes) and to what extent it uses more subtle information.

'An algorithm for selecting dimensions for optimizing a distributional space for a particular task already exists
(see https://github.com/akb89/entropix) and could be adapted to our problem.
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A. Supplementary tables and figures

A.1. Prediction accuracy

See Tables A.1 through A.5.

Note on missing values: In the results for count vectors (Table A.3), some scores are missing
for binary hurricane attributes. This is because, due to the small size of the available dataset,
in some cross-validation splits the training data contained samples from only a single class,
meaning that the model could not be trained. We decided to exclude attributes for which this
happened at least once.

A.2. Dimension analysis

See Table A.6.
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ACCURACY
BL SVM MLP
GloVe BERT GloVe BERT
CLS Tokens CLS Tokens
Gs Bpp Bps Bms Bmg Bmiz | Gs Bpp Bps Bms Bmg Bmiz

ArNS 0.75 | 0.99 0.96 0.94 0.99 0.99 0.99 0.98 0.96 0.93 0.99 0.98 0.99
ArWE | 0.51 | 0.99 0.96 0.94 098 0.98 0.98 0.98 0.95 0.93 0.98 0.97 0.98

Ca 0.64 | 0.89 087 082 091 089 0.90 0.88 0.85 0.79 0.91 0.89 0.90
Da 0.50 | 0.70 0.67 0.65 0.69 0.71 0.71 0.70 0.65 0.64 0.71 0.71 0.71
Du 0.49 | 0.74 0.65 0.63 0.71 0.72 0.72 0.72 0.63 0.62 0.73 0.72 0.73
Fa 0.50 | 0.69 0.66 0.63 0.68 0.69 0.71 0.70 0.63 0.62 0.70 0.70 0.71
Pr 0.49 | 0.80 0.73 0.72 0.83 080 0.81 0.81 0.72 0.69 0.83 0.81 0.82
Wi 0.50 | 0.78 0.71 0.69 0.80 0.78 0.78 0.79 0.71 0.66 0.80 0.78 0.78
Ye 0.50 | 0.72 0.79 0.73 0.84 0.82 0.84 0.73 0.78 0.70 0.84 0.82 0.85
H(m.)

Ar 0.40 | 0.98 094 089 0.98 0.96 0.97 0.98 0.93 0.90 0.98 0.96 0.97
Ca 0.17 | 0.44 0.35 0.32 0.47 0.41 0.42 0.43 0.32 0.28 0.47 042 042
Da 0.25 | 041 0.37 0.36 0.41 0.40 0.41 0.42 0.35 0.37 0.43 043 0.41
Du 0.26 | 0.44 0.36 034 044 0.43 043 0.45 0.34 0.35 0.45 0.44 0.43
Fa 0.25 | 0.41 0.35 0.35 040 0.38 0.38 0.43 0.33 0.32 0.43 0.43 0.42
Pr 0.25 | 0.54 0.44 0.42 0.54 0.51 0.51 0.55 0.42 0.39 0.54 0.52 0.52
Wi 0.25 | 0.57 0.47 0.42 0.59 0.55 0.55 0.58 0.45 0.39 0.59 0.56 0.56
Ye 0.26 | 0.48 0.56 0.47 0.61 0.57 0.62 0.49 0.55 0.44 0.62 0.59 0.62
C(b.)

Du 0.51 | 0.65 0.64 0.59 0.67 0.67 0.68 0.66 0.58 0.56 0.68 0.69 0.69
Le 0.52 | 0.70 0.66 0.62 0.68 0.68 0.69 0.71 0.62 0.60 0.70 0.70 0.70
Ye 0.50 | 0.73 085 080 085 083 0.87 0.74 0.85 0.79 0.86 0.85 0.87
Cc(m.)

Du 0.25 | 0.40 0.37 0.34 0.43 041 0.42 0.40 0.34 0.32 0.44 0.43 0.44
Le 0.26 | 0.42 0.38 035 041 0.42 040 0.43 0.35 0.33 0.43 044 0.43
Ye 0.25 | 0.49 0.66 o0.55 0.68 0.62 0.69 0.49 0.65 0.52 0.68 0.63 o0.70
B (b.)

ArNS 0.88 | 0.97 0.96 0.95 0.98 0.97 0.98 0.97 0.95 0.94 0.98 0.97 0.98
ArWE | 055 | 0.92 0.90 0.88 0.93 091 0.93 0.92 0.89 0.87 0.95 0.93 0.94

Be 0.58 | 0.74 0.73 0.72 0.74 0.73 0.75 0.74 0.73 0.72 0.75 0.75 0.74
InF 0.74 | 0.93 091 0.89 0.93 0.92 0.93 0.94 0.91 0.89 0.94 0.93 0.93
InS 0.88 | 0.96 0.94 0.94 0.96 0.95 0.96 0.96 0.94 0.94 0.96 096 0.96
InUS 0.76 | 0.95 0.94 0.93 0.95 0.95 0.95 0.95 0.93 0.92 0.95 0.95 0.95
StR 0.50 | 0.57 0.53 0.54 0.56 0.55 0.58 0.58 0.53 0.56 0.59 0.59 0.58
StT 0.51 | 0.72 0.69 0.67 0.72 0.70 0.75 0.74 0.68 0.64 0.76 0.75 0.75
Ye 0.50 | 0.88 0.95 0.90 0.96 0.94 0.95 0.88 0.94 0.90 0.96 0.95 0.96
B(m.)

Ar 0.48 | 0.90 0.86 0.83 0.92 0.89 0.90 0.91 0.83 0.83 0.93 0.91 0.92
Be 0.31 | 0.50 049 0.48 o0.50 048 0.49 0.51 0.49 0.47 0.50 0.50 0.52
StR 0.25 | 0.30 0.27 0.28 030 0.28 0.28 0.32 0.26 0.29 0.31 0.29 0.29
StT 0.25 | 0.42 0.38 034 041 0.41 041 0.44 0.35 0.33 0.45 0.45 0.45
Ye 0.25 | 0.79 0.90 0.81 0.91 0.88 0.91 0.79 0.88 0.80 0.90 0.89 0.92

Legend. Events/attributes: H=Hurricanes, C=Concert tours, B=Battles; (b.)=binary, (m.)=multi-class; Ar=Area,
Be=Belligerents, Ca=Category, Da=Damage, Du=Duration, Fa=Fatalities, InF/InS/InUS=Involves France/Spain/US,
Le=Legs, Pr=Air pressure, StR/StT = Strength Ratio/Total, Wi=Wind speed, Ye=Year (see Table 3.1). Embeddings:
Gs=GloVe-Summed, Bpp=Bert-Pooled-Paragraph, Bps=Bert-Pooled-Sentences, Bm{s, 9, 12}=Bert-Mean-{5, 9, 12}.
BERT representations are grouped by whether they use pooled representations from the CLS token (‘CLS’), or
compose the representations from individual work tokens (‘Tokens’).

Table A.1.: Prediction accuracy results



F1

BL SVM MLP
GloVe BERT GloVe BERT
CLS Tokens CLS Tokens
Gs Bpp Bps Bms Bmg Bmiz | Gs Bpp Bps Bms Bmg Bmiz

H(b.)

ArNS 0.49 | 0.98 0.92 0.87 099 0.97 0.97 0.97 0.90 0.85 0.98 0.96 0.97
ArWE | o0.51 | 0.99 0.96 0.94 0.98 0.98 0.98 0.98 0.95 0.93 0.98 0.97 0.98
Ca 0.50 | 0.84 0.81 0.74 088 0.85 0.85 0.84 0.77 0.67 0.87 085 0.86
Da 0.50 | 0.70 0.67 0.65 0.69 0.71 0.71 0.70 0.65 0.64 0.71 0.71 0.71
Du 0.49 | 0.74 0.65 0.63 0.71 0.72 0.72 0.72 0.63 0.62 0.73 0.72 0.73
Fa 0.50 | 0.69 0.66 0.62 0.68 0.69 0.71 0.70 0.63 0.62 0.70 0.70 0.71
Pr 0.49 | 0.80 0.73 0.72 0.83 0.80 0.80 0.81 0.72 0.69 0.82 080 0.82
Wi 0.50 | 0.78 0.71 0.69 080 0.78 0.78 0.79 0.71 0.66 0.80 0.78 0.78
Ye 0.50 | 0.72 0.79 0.73 0.84 0.82 0.84 0.73 0.77 0.70 0.83 0.82 0.85
H(@m.)

Ar 0.24 | 0.84 0.70 0.66 0.79 0.75 0.79 0.81 0.67 0.65 0.77 0.74 0.77
Ca 0.14 | 0.39 0.31 0.29 045 0.39 0.41 0.37 0.21 0.20 0.40 0.33 0.38
Da 0.25 | 0.41 0.37 0.36 041 0.40 0.41 0.41 034 0.36 0.42 0.42 041
Du 0.26 | 0.43 0.35 0.34 0.44 0.42 0.42 0.44 0.33 0.35 0.44 0.43 0.43
Fa 0.25 | 0.40 0.35 0.34 0.40 0.38 0.38 0.40 0.32 0.32 0.41 0.42 041
Pr 0.25 | 0.54 0.43 041 0.53 0.51 0.50 0.53 041 0.38 0.53 0.51 0.52
Wi 0.25 | 0.57 0.47 0.42 0.59 0.55 0.55 0.57 045 0.39 0.59 0.56 056
Ye 0.26 | 0.48 0.56 0.47 0.62 0.58 0.63 0.49 0.55 0.44 0.62 0.60 0.63
Cc®.)

Du 0.51 | 0.65 0.64 0.59 0.67 0.67 0.68 0.66 0.58 0.56 0.68 0.69 0.69
Le 0.50 | 0.67 0.63 0.56 0.66 0.66 0.67 0.70 0.55 0.53 0.68 0.68 0.69
Ye 0.50 | 0.73 0.85 080 0.85 0.83 0.87 0.74 0.85 0.79 0.86 0.85 0.87
C(m.)

Du 0.25 | 0.39 0.37 0.34 0.43 0.40 0.41 0.40 0.33 0.32 0.44 0.43 0.44
Le 0.25 | 0.40 0.35 0.30 0.40 0.41 0.39 0.42 0.28 0.27 0.42 0.43 0.42
Ye 0.25 | 0.49 0.67 0.55 0.69 0.62 0.69 0.48 0.65 0.52 0.68 0.63 o0.71
B(b.)

ArNS 0.50 | 0.83 0.78 0.64 0.90 0.86 0.89 0.87 0.64 0.62 0.91 0.86 0.90
ArWE | o.50 | 0.91 0.88 086 0.93 0.91 0.92 0.92 0.88 0.86 0.94 092 0.93
Be 0.50 | 0.61 0.60 0.54 0.67 0.65 0.66 0.65 0.60 0.58 0.67 0.66 0.66
InF 0.50 | 0.85 080 0.72 087 0.84 0.85 0.87 0.79 0.73 0.87 0.85 0.85
InS 0.50 | 0.76 0.63 o0.57 082 0.78 0.76 0.81 0.57 0.56 0.83 0.79 0.81
InUS 0.50 | 0.89 0.86 084 o0.90 0.89 0.90 0.89 0.86 0.84 0.91 090 0.90
StR 0.50 | 0.57 0.53 0.54 0.56 0.55 0.58 0.58 0.53 0.56 0.59 0.59 0.58
StT 0.51 | 0.72 0.69 0.67 o0.72 0.70 0.75 0.74 0.68 0.64 0.76 o0.75 0.75
Ye 0.50 | 0.88 0.95 0.90 0.96 0.94 0.95 0.88 0.94 0.90 0.96 0.95 0.96
B (m.)

Ar 0.25 | 0.80 0.72 0.57 087 0.81 0.86 0.84 0.52 0.56 0.87 082 0.85
Be 0.25 | 0.34 0.34 0.29 0.40 0.38 0.39 0.37 034 0.32 0.39 0.39 041
StR 0.25 | 0.30 0.27 0.28 0.29 0.28 0.28 0.32 0.24" 0.29 0.31 028 0.29
StT 0.25 | 0.42 0.38 0.34 041 0.41 041 0.43 0.35 0.32 0.45 0.45 0.45
Ye 0.25 | 0.79 0.90 0.81 0.91 0.88 0.91 0.79 0.88 080 0.90 0.8 0.92

Legend: see Table A.1.

Table A.2.: Prediction results (F1 scores)




ACC F1 N
BL SVM BL SVM
Raw2 Rawg PPMI2 PPMIs Gs Co2 Cos; PPMI2 PPMIs Gs

H (b.)
ArNS - - - - - - - - - - - - 49
ArWE | 0.77 | 0.85 0.83 0.85 0.86 0.89 0.51 | 0.67 0.57 0.46" 0.47" 0.75 48
Ca - - - - - - - - - - - - 50
Da - - - - - - - - - - - - 51
Du 0.65 | 0.77 0.76 0.78 0.80 0.79 0.48 | 0.62 0.53 0.44" 0.45" 0.59 51
Fa - - - - - - - - - - - - 51
Pr 0.81 | 0.85 0.83 0.88 0.88 0.85 0.53 | 0.54 0.48" 0.47" 0.47" 0.53" 51
Wi 0.82 | 0.85 0.85 0.88 0.88 0.85 0.53 | 0.59 0.50° 0.47" 0.47* 0.51" 51
Ye 0.50 | 0.75 0.78 0.48" 0.70 0.61 0.50 | 074 0.78  0.41% 0.70 0.60 51
H(@m.)
Ar 0.78 | 0.84 0.86 0.87 0.87 0.86 034 | 0.38 0.40 0.317 0.31" 0.41 47
Ca 0.31 | 0.37 0.41 0.38 0.39 0.35 0.18 | 0.20 0.20 o0.14" 0.16* 0.18" 50
Da 0.82 | 0.88 0.88 0.90 0.90 0.88 0.31 | 0.34 0.35 0.32 0.32 0.31" 51
Du 0.41 | 0.45 0.52 0.59 0.59 0.48 0.24 | 0.24° 0.26 0.19" 0.19" 0.22" 51
Fa 0.50 | 0.63 0.69 0.72 0.71 0.62 0.21 | 0.34 0.36  0.27 0.22 0.29 51
Pr 0.40 | 0.39"  0.42 0.43 0.46 0.48 0.23 | 0.22° 0.24 0.16" 0.20" 0.27 51
Wi 0.45 | 0.45" 0.44" 0.56 0.58 0.54 0.23 | 0.27 0.19" 0.18" 0.19" 0.30 51
Ye 0.26 | 0.46 0.49 0.20" 0.39 0.23" 0.25 | 0.47 0.49 o0.117 0.32 0.22" 51
C(b.)
Du 0.52 | 0.57 0.65 0.51" 0.65 0.60 0.49 | 0.52 0.60 0.41" 0.50 0.52 74
Le 0.49 | 0.57 0.59 0.48" 0.58 0.62 0.49 | 0.55 0.58 0.39" 0.56 0.62 69
Ye 0.51 | 0.58 0.75 0.54 0.75 0.76 050 | 0.58 0.74 0.36" 0.74 0.75 76
C(m.)
Du 0.28 | 0.33 0.34 0.39 0.38 0.29 0.25 | 0.31 0.33 0.217 0.25" 0.24" 74
Le 0.27 | 0.35 0.33 0.33 0.31 0.26" 0.25 | 0.32 0.30 0.20" 0.19" 0.23" 69
Ye 0.25 | 0.34 0.44 0.28 0.42 0.42 0.23 | 0.32 0.39 0.14" 0.31 0.37 76
B (b.)
ArNS 0.90 | 0.94 0.94 0.94 0.94 0.95 0.51 | 0.50° 0.65 0.49" 0.49" 0.70 369
ArWE | 0.53 | 0.78 0.81 0.61 0.91 0.90 0.51 | 076 0.81 0.42% 0.90 0.90 369
Be 0.49 | 0.63 0.66 0.55 0.71 0.66 0.49 | 0.63 0.66 0.41" 0.71 0.66 420
InF 0.69 | 0.81 0.89 0.82 0.89 0.89 0.50 | 0.61 0.82 0.52 0.77 0.80 420
InS 0.91 | 0.95 0.95 0.96 0.96 0.95 0.50 | 0.49° 0.66  0.60 0.62 0.54 420
InUS 0.66 | 0.83 0.89 0.79 0.91 0.91 0.50 | 0.71 0.83 0.50" 0.85 0.86 420
StR 0.55 | 0.61 0.58 0.70 0.67 0.60 0.49 | 0.45° 0.49" 0.46" 0.42* 0.47" 102
StT 0.62 | 0.72 0.72 0.75 0.75 0.76 0.50 | 0.55 0.59  0.43" 0.44" 0.57 102
Ye 0.51 | 0.82 0.90 0.59 0.96 0.88 0.49 | 0.81 0.90  0.42" 0.96 0.88 428
B (m.)
Ar 0.47 | 0.70 0.78 0.56 0.86 0.88 0.25 | 0.44 0.47 0.19% 0.44 0.67 369
Be 0.27 | 0.36 0.39 0.29 0.49 0.43 0.25 | 0.33 0.35 0.16" 0.39 0.37 420
StR 0.29 | 0.27°  0.34 0.42 0.41 0.32 0.25 | 0.23° 0.27 0.15" 0.20" 0.21" 102
StT 0.35 | 0.46 0.52 0.50 0.53 0.60 0.24 | 0.33 0.36 0.17" 0.25 0.39 102
Ye 0.27 | 0.62 0.78 0.32 0.91 0.78 0.26 | 0.59 0.76  0.18" 0.89 0.76 428

Legend. ‘-’ indicate missing scores. Embeddings: Raw2/Raws=raw counts, window size 2 or 5;
PPMI2/PPMI5=PPMI-weighted counts, window size 2 or 5; Gs=Summed GloVe vectors. N=number of events with
a particular attribute for which count vectors are available.

Table A.3.: Results for count-based event name vectors




ACC F1 N
BL SVM MLP BL SVM MLP
Fr Gs Fr Gs Fr Gs Fr Gs
Hurricanes
(binary)
Area (NS) 0.66 | 098 0.97 | 099 0.88 049 | 096 0.95 | 0.98 0.83 153
Area (WE) 0.52 | 0.97 0.95 | 095 0.94 0.50 | 0.97 0.95 | 0.94 0.94 148
Category 0.84 | 091 0.92 | 091 0.89 0.50 | 0.54 0.58 | 0.53 0.58 155
Damage 0.68 | 0.85 0.75 0.87 0.75 0.52 | 0.74 0.52° | 0.79  0.62 143
Duration 0.55 | 0.66 0.72 | 0.67 0.69 0.51 | 0.60 0.67 | 0.62 0.66 157
Fatalaities 0.57 | 0.82 0.79 | 0.83 o0.75 049 | 076 0.72 | 0.78  0.68 157
Pressure 0.67 | 0.84 0.85 0.84 0.80 0.50 | 0.68 0.71 0.68  0.68 157
Wind speed 0.65 | 0.78 0.79 | 0.78 0.78 0.50 | 0.62 0.64 | 0.61 0.65 157
Year 0.50 | 0.96 0.71 | 0.94 0.70 0.50 | 0.96 0.71 | 0.94 0.70 157
(multi)
Area 0.41 | 0.95 0.92 | 0.95 0.87 0.24 | 0.84 0.67 | 0.81 0.67 147
Category 0.25 | 0.32 0.35 | 0.33 0.32 0.15 | 0.17 0.23 | 0.15" 0.22 155
Damage 038 | 0.57 048 | 0.61 047 0.24 | 0.35  0.25 0.37 0.26 143
Duration 0.30 | 0.38 0.40 | 0.38 0.37 0.27 | 0.32 035 | 0.31 0.33 157
Fatalaties 0.30 | 0.55 041 | 0.53 0.45 0.24 | 0.43 033 | 042 0.35 157
Pressure 0.35 | 0.49 0.48 | 0.48 o045 0.24 | 0.37 0.35 0.34 0.38 157
Wind speed 0.32 | 0.44 0.49 | 0.44 0.47 0.24 | 0.32 038 | 032 0.37 157
Year 034 | 0.84 0.53 | 0.83 o0.52 0.25 | 0.72 0.36 | 0.72 0.34 157
Concert tours
(binary)
Duration 0.56 | 0.62 0.62 | 0.63 0.61 0.50 | 0.53 0.46" | 0.55 0.52 146
Legs 0.50 | 0.61 0.66 | 0.62 0.62 0.49 | 0.60 0.64 | 0.60 0.61 139
Year 0.54 | 0.88 0.64 | 0.88 0.62 0.51 | 0.87 0.57 | 0.87 0.59 149
(multi)
Duration 0.29 | 0.33 0.29° | 0.36 0.28" 0.25 | 0.25% 0.22* | 0.26  0.22" 146
Legs 0.25 | 0.38 0.37 | 040 0.37 0.23 | 0.31 031 | 0.33 0.32 139
Year 0.33 | 0.74 0.40 | 0.76 0.43 0.32 | 0.75 0.38 | 0.76 0.42 149
Battles
(binary)
Area (NS) 0.84 | 095 0.94 | 096 0.93 049 | 0.80 0.71 | 0.81 0.72 501
Area (WE) 0.50 | 0.92 0.92 | 0.92 0.92 0.50 | 0.92 0.92 | 0.92 0.92 501
Belligerents 0.51 | 0.59 0.67 | 0.66 0.69 0.49 | 0.57 0.65 0.63  0.68 578
Involved France | 0.77 | 0.90 0.90 | 0.91  0.90 0.50 | 0.75 0.74 | 0.77  0.76 578
Involved Spain | 0.92 | 0.96 0.96 | 0.96 0.96 0.50 | 0.54 0.58 | 0.54 0.66 578
Involved US 0.54 | 090 089 | 091 0.88 049 | 0.89 087 | 091 0.87 578
Strength (Ratio) | 0.50 | 0.46" 0.48" | 0.49" 0.53 0.50 | 0.46 0.48% | 0.48" 053 151
Strength (Total) | 0.51 | 0.69 0.76 | 071  0.77 0.50 | 0.69 0.75 | 0.71  0.76 151
Year 0.51 | 0.89 087 | 090 0.87 0.49 | 0.89 086 | 089 0.87 586
(multi)
Area 0.43 | 0.88 0.87 | 0.88 0.88 0.25 | 0.70  0.65 0.67  0.72 501
Belligerents 0.27 | 0.38 0.44 | 0.40 0.46 0.25 | 0.34 038 | 035 0.40 578
Strength (Ratio) | 0.27 | 0.24" 0.23" | 0.24" o0.25" 0.26 | 0.22* 0.20" | 0.20" 0.24" 151
Strength (Total) | 0.24 | 0.42 0.46 | 0.43 0.49 0.23 | 0.37 0.43 | 038 0.46 151
Year 0.26 | 0.82 0.81 0.81 0.80 0.25 | 0.80 0.80 | 0.79 0.79 586

Legend. Embeddings: Fr=Freebase wordzvec vectors, Gs=Summed GloVe vectors. N=number of events with a

particular attribute for which Freebase vectors are available.

Table A.4.: Results for wordzvec Freebase vectors




ACC F1 N
BL SVM MLP BL SVM MLP
Wi Gs Wi  Gs Wi Gs Wi  Gs

Hurricanes
(binary)
Area (NS) 0.79 | 1.00 0.99 | 1.00 0.98 0.50 | 0.99 0.98 | 0.99 0.95 792
Area (WE) 0.52 | 0.99 0.99 | 1.00 0.98 0.50 | 0.99 0.99 | 1.00 0.98 761
Category 0.68 | 0.82 0.90 | 0.84 0.88 0.51 | 0.69 0.84 | 0.75 0.81 793
Damage 0.50 | 0.78 0.68 | 0.78 0.68 0.50 | 0.78 0.68 | 0.78 0.68 730
Duration 0.50 | 0.71 0.73 | 0.73 0.73 0.50 | 0.71 0.73 | 0.73 0.73 817
Fatalities 0.50 | 0.74 0.70 | 0.76 0.70 0.49 | 0.74 0.70 | 0.76 0.70 803
Pressure 0.51 | 0.80 0.79 | 0.82 0.80 0.51 | 0.80 0.79 | 0.82 0.80 802
Wind speed 0.50 | 0.76 0.80 | 0.78 0.80 0.50 | 0.76 0.79 | 0.78 0.80 813
Year 0.51 | 0.86 0.69 | 0.87 0.69 0.51 | 0.86 0.69 | 0.87 0.69 817
(multi)
Area 0.43 | 0.99 0.98 | 0.99 0.97 0.24 | 0.90 0.79 | 0.92 0.76 756
Category 0.17 | 0.36 0.43 | 0.39 0.42 0.13 | 0.26 0.36 | 0.28 0.33 793
Damage 0.26 | 0.51 0.39 | 0.53 0.40 0.25 | 0.50 0.39 | 0.52 0.38 730
Duration 0.25 | 0.40 0.44 | 0.42 0.45 0.25 | 0.39 0.43 | 0.41 0.44 817
Fatalaties 0.25 | 0.46 0.41 | 048 0.43 0.25 | 0.46 0.40 | 0.47 0.42 803
Pressure 0.26 | 0.49 0.54 | 0.52 0.56 0.26 | 048 0.53 | 0.50 0.54 802
Wind speed 0.26 | 0.49 0.58 | 0.51 0.57 0.25 | 0.49 0.58 | 0.51 0.57 813
Year 0.25 | 0.70 0.43 | 0.73 0.45 0.25 | 0.71 0.43 | 0.74 0.45 817
Concert tours
(binary)
Duration 0.51 | 0.65 0.63 | 0.67 0.65 0.51 | 0.65 0.62 | 0.67 0.65 978
Legs 0.50 | 0.66 0.67 | 0.68 0.67 0.50 | 0.65 0.67 | 0.68 0.67 843
Year 0.50 | 0.90 0.74 | 0.91 0.74 0.50 | 0.90 0.74 | 0.91 0.74 988
(multi)
Duration 0.25 | 0.40 0.36 | 0.44 0.37 0.25 | 0.40 0.36 | 0.44 0.38 978
Legs 0.26 | 0.41 0.37 | 0.44 0.39 0.25 | 0.40 0.35 | 0.43 0.39 843
Year 0.26 | 0.76 0.47 | 0.79 0.48 0.25 | 0.75 0.46 | 0.78 0.48 988
Battles
(binary)
Area (NS) 0.88 | 0.99 0.97 | 0.99 0.97 0.50 | 0.96 0.84 | 0.97 0.87 2775
Area (WE) 0.54 | 0.96 0.93 | 0.97 0.93 0.50 | 0.95 0.92 | 0.96 0.92 2775
Belligerents 0.56 | 0.74 0.72 | 0.75 0.73 0.50 | 0.66 0.62 | 0.69 0.65 4405
Involved France | 0.73 | 0.94 0.93 | 0.95 0.93 0.50 | 0.89 0.86 | 0.90 0.88 4405
Involved Spain | 0.87 | 0.96 0.95 | 0.97 0.96 0.50 | 0.83 0.75 | 0.87 0.81 4405
Involved US 0.73 | 0.96 0.95 | 0.97 0.94 0.50 | 0.93 0.90 | 0.94 0.89 4405
Strength (Ratio) | 0.50 | 0.59 0.58 | 0.60 0.59 0.50 | 0.59 0.57 | 0.59 0.58 989
Strength (Total) | 0.51 | 0.76 0.73 | 0.79 0.74 0.51 | 0.76 0.73 | 0.78 0.73 989
Year 0.50 | 0.98 0.88 | 0.99 0.88 0.50 | 0.98 0.88 | 0.99 0.88 4473
(multi)
Area 0.48 | 0.95 0.91 | 0.96 0.91 0.25 | 0.95 0.82 | 0.95 0.84 2775
Belligerents 0.30 | 0.50 0.48 | 0.52 0.48 0.25 | 0.39 0.35 | 0.43 0.38 4405
Strength (Ratio) | 0.25 | 0.28 0.30 | 0.31 0.30 0.25 | 0.28 0.29 | 0.31 0.30 989
Strength (Total) | 0.25 | 0.49 0.43 | 0.51 045 0.25 | 0.48 0.42 | 0.50 0.44 989
Year 0.25 | 0.98 0.78 | 0.98 0.79 0.25 | 0.98 0.78 | 0.98 0.78 4473

Legend. Embeddings: Wi= WikipediazVec vectors, Gs=GloVe-Summed vectors. N=number of events with a
particular attribute for which count vectors are available.

Table A.5.: Prediction results for WikipediazVec vectors
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Dim Var | o 1 2
wlo 0.70 | /wiki/Hurricane_Maria /wiki/Typhoon_Utor /wiki/Tropical_Storm_Sonca_(2017)
% 1 0.03 | /wiki/Cyclone_Rusty /wiki/Cyclone_Amara /wiki/Tropical_Storm_Etau_(2009)
2 0.03 | /wiki/Hurricane_Hanna /wiki/Tropical_Storm_Claudette_(1979) /wiki/Hurricane_Agnes
£l 3 0.02 | /wiki/Typhoon_Ken_(1982) /wiki/Hurricane_Keith /wiki/Typhoon_Bess_(1974)
= 4 0.02 | /wiki/Typhoon_Morakot /wiki/Hurricane_Blanca_(2015) /wiki/Cyclone_Nargis
<I) 0.76 | /wiki/Theatre_of_Madness_Tour /wiki/The_0zzman_Cometh_Tour /wiki/The_Ultimate_Sin_Tour
5 1 0.03 | /wiki/The_Sun_Comes_QOut_World_Tour /wiki/The_Ride_Tour /wiki/Blue_Moon_World_Tour
T2 0.01 | /wiki/Couldn’27t_Stand_the_Weather_Tour /wiki/Number_Ones, _Up_Close_and_Personal /wiki/Loud_Tour
213 0.01 | /wiki/TP.3_Reloaded /wiki/Born_This_Way_Ball /wiki/Unfinished_Business_(Jay-Z_and_R._Kelly_album)
S 4 0.01 | /wiki/Barefoot_at_the_Symphony_Tour /wiki/Vespertine_World_Tour /wiki/The_Onyx_Hotel_Tour
o 0.68 | /wiki/Battle_of_Khresili /wiki/Battle_of_Wabho /wiki/Battle_of_the_Hotels
g1 0.02 | /wiki/Battle_of_Steenbergen_(1583) /wiki/Battle_of_Grand_PrYC3%A9 /wiki/Battle_of_Annan
Em 2 0.02 | /wiki/Battle_of_Fairfax_Court_House_(June_1863) /wiki/Battle_of_Sattelberg /wiki/First_Battle_of_Charleston_Harbor
m|3 0.01 | /wiki/First_Battle_of_Passchendaele /wiki/Battle_of_Nicopolis_(1798) /wiki/Battles_of_Kawanakajima
4 0.01 | /wiki/Battle_of_Ponta_Delgada /wiki/First_Battle_of_Ypres /wiki/Battle_of_the_Basque_Roads
Dim Var | -3 -2 -1
w |0 0.70 | /wiki/Hurricane_Bill_(2009) /wiki/Typhoon_Kinna_(1991) /wiki/Cyclone_Alan
% 1 0.03 | /wiki/1900_Galveston_hurricane /wiki/Tropical_Storm_Fay_(2008) /wiki/Hurricane_Jeanne
L2 0.03 | /wiki/Typhoon_Kinna_(1991) /wiki/Typhoon_Morakot /wiki/Cyclone_Nargis
ERIE 0.02 | /wiki/Cyclone_Vance /wiki/Cyclone_Gamede /wiki/1949_Florida_hurricane
= 4 0.02 | /wiki/Typhoon_Vicente /wiki/Typhoon_Nabi /wiki/Typhoon_Rammasun
2o 0.76 | /wiki/Red_Hot_Chili_Peppers_1983_Tour /wiki/Speak_of_the_Devil_Tour /wiki/A_Big Night_in_with_Darren_Hayes_Tour
§ 1 0.03 | /wiki/Volta_Tour /wiki/No_Prayer_on_the_Road /wiki/Red_Hot_Chili_Peppers_1983_Tour
ERE 0.01 | /wiki/R40_Live_Tour /wiki/Damage,_Inc._Tour /wiki/Speak_of_the_Devil_Tour
213 0.01 | /wiki/Don%27t_Believe_the_Truth_Tour /wiki/Be_Here_Now_Tour /wiki/The_Ride_Tour
S 4 0.01 | /wiki/The_Uplift_Mofo_Party_Tour /wiki/Black_%26_Blue_Tour /wiki/Merry_Mayhem_Tour
o 0.68 | /wiki/Battle_of_Monmouth /wiki/Battle_of _Ngh%C4%A9a_L%E1%BB%99_(1951) /wiki/Second_Battle_of_Kom/%C3%Alrom_(1849)
2|1 0.02 | /wiki/Battle_of_Long_Kh7C3%Alnh /wiki/Battle_of_Coral’E2%80%93Balmoral /wiki/Battle_of_Zahleh
Tj-é 2 0.02 | /wiki/Battle_of_the_Colline_Gate_(82_BC) /wiki/Battle_of_the_Camel /wiki/Battle_of_Gallipoli_(1312)
R 3 0.01 | /wiki/Second_Battle_of_Auburn /wiki/Battle_of_Lookout_Mountain /wiki/Battle_of_Monck’27s_Corner
4 0.01 | /wiki/Battle_of_Alamance /wiki/Battle_of_Langside /wiki/Battle_of_Chancellorsville

Note: Events are represented here using (partial) Wikipedia URLs. The full URL for each event can be obtained by prefixing https://en.wikipedia.org.

Table A.6.: Event vectors activated by PCA dimensions
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